
I D-AI32 612 THE SOFTWARE ENGINEERING PROTOTYPE(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA M R KIRCHNER JUN 83

UNCLAS51FIED F/G 9/2 N

m MmoEmoEEEmiI
EohohEohEohhEE
mhhEohmhEEohEI
EEmhohEohhEmhE
EohEEohhEEmhEE
smmhhmhohmhmhh
"smmhhmhohEEEEE

'.&4

.L6

.1.

NAINA URA OF1 STNA- I 3-

I
* .NAVAL POSTGRADUATE SCHOOLMonterey, California

qi

DTIC
ELLClTI

THESIS SP09

THE SOFTWARE ENGINEERING PROTOTYPE

by

Michael R. Kirchner

June 1983

C.4)

L-J Thesis Advisor: Gordon C. Howell

." Approved for public release; distribution unlimited

-. " X

99CuRgTY CLASINVICAVION OF THIS PAGES (Who Does entered)
REPOT DCUMNTATON AGEREAD INSTRUCTIONS

______________________________PAGE ____ BEFORECOMPLETINGFORM

1. REPORT HNGMER 12. GOVT ACCESSSONNO. X. RECIPIENT'S CATALOG NUMBER

4. TITLE r-id U4611111) S. TYPE OF REPORT A PERI1OD COVERED

The Software Engineering Prototype Master's Thesis
Juine, 1983

6. PERFORMING ORG. REPORT NUMBER

7. AJUTHORfa) 8. CONTRACT OR GRANT NUNBER(.)

Michael R. Kirchner

9. PeRFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA A WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93940

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School June, 1983
Monterey, California 13. NUMBER OF PAGES

I& ONITRN A49C N4N NAM ADDRESwjif dlitemuu hat Contralifte Ofice) 1S. SECURITY CLASS. (of this report)

If- D*STRmUYIOM STATEM9NT (of Odse Rpet

Approved for public release; distribution unlimited

17. OIBTIUTION STATEMENT (of the aftowent ~toe MnSe"k It dilefn Inae RoPet)17

1S. SUPP11.lMETARY NOTES

IS. Key WORD re.,ehwe an towes e t *o1nesooam and Idenstify by week Member)

software engineering, software prototype, software design,

design theories, software engineering environments, case

studies, software development, information systems development,

system development life cycle

26. AISTRACT (Cmffime -n reves side Itooseemy an Identfyt by block Member)
Experience has shown that the traditional method of software de-
velopment often has poor results. Recently, a new approach to
software development, the prototype approach, has been proposed.
This thesis presents an integrated view of general design theorie
and relates that view to software design and development. The
current thought on prototypes is described and the basic require-
ments for a software engineering environment are presented. (Cont)

00 1 pj 1473 tYo-n oF I Nov of is OSSOLETE1r

S/N 0102- 0P. 014. 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (Whon Dae Anteroe'

aSWXmTV CLASSfICjTOU oF THInS PAWS MINIM "0 OW0

ABSTRACT (Continued) Block # 20

Software prototypes are shown to support the integrated view of
designs. Four case studies of using prototypes are presented
and recommendations for further study are made.

7--

S, N 0 102- LF- 0 14-6601

2 IECURITY CLASSIFICATION OPP THInS PAGE(UW.. 0810 AMOeP90

* , Apprcved for public release; distribution unlimited.

The Softusre Engineering Prototy pe

by

Michael R. Kirchner
B.S., Illinois Benedictine College, 1973

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

June 1983

Author: -

Ap provwed ty:

Thes s Advisor

Second Reader

Chairman, Department of AdministratiJve Sciences

Dean, of Information clc Sciences

3

- A - -* .' ' ' " -" "- -. - - " - -

i'.

& BSTRkCT

Experience has shown that the traditional methcd of

software development often has poor results. Recently, a

new approach to softwa e development, the potctype

approach, has been proposed. This thesis presents an inte-

grated view of general design theories and relates that view

to software design and development. The current thought on

prototypes is described and the basic reguirements for a

software engineering environment are presented. Software

prototypes are shown to support the integrated view of

design. Pour case studies cf using prototypes are presented

and recommendaticns fcr further study are made.

-4

*4

TABLE C? CONTENTS

I. IUTRCDUCTION 10

II. MODELS OF DESIGN METHODS 12

A. STRUCTUREC MODELS OF DESIGN 12

B. WICKED PRCELEMS 15

C. ACCUMULATEC KNOWLEDGE MODELS OF DESIGN 18

1. Design is Arguaentative 18

2. Patterns in Design 18

3. Design as Learning 19

4. Design is Satisficing 20

C. CESIGN kS A TECHNOLOGICAL ACTIVITY 21

E. DESIGN IS EVOLUTIONARY 21
F. SUNEAR .Y 23

III. SOFTWARE DESIGN METHCDS 25

A. SOFTWARE E!SIGN IS SYMMETRICAL AND ADAPTIVE . 25

8. LESIGN IS SATIS?ICING 26

C. SOFTWARE CESIGN IS A WICKED PROBLEM 28
D. CORBUNICATIONS BETWEEN THE DESIGNER AND THE

ENE USER . 33

E. SOFTWARE CESIGN IS LEARNING 35

F. SOFTWARE £ESIGN HAS AN ORGAAIZATION&L CONTEXT 40

G. SOFTWARE CESIGN IS EVOLUTIONARY 43

H. SUMMARY 47

IV. THE SOFTWARE PROTOTYPE 49

A. INTRODUCTIC 49
B. THE PROTOTPE PRCCESS 50

C. PROTOTYPES AS MODELS 51

D. STRATEGIES TO PRODUCE PROTOTYPES 53

5

1. The 'Methodology' Strategy 53

2. Executable Specifications 53

3. Automatic Programming 54

E. USES OF PBOTOTYPES55

1. To Clarify the User's Requirements 55

2. To Verify the Feasibility of Design . . . 56

3. To Create the Final System 56

F. PROTOTYPES ADDRESS THE ESSENTIAL DESIGN

ELEMENTS . 57

1. Prototyping is a Symmetrical and Adaptable

Process 57

2. Prototyping 'Tames' the Wicked Problem . . 57

3. Software Prototyping is Satisficing . . . 59

4. Prototyping is Ccmaunicating 59

5. The Scftware Prototype is a Learning Aid . 60

6. The Prctotype Processs Accounts for

Organizational Issues 61

7. The Prctotype Process is Evolutionary . . 62

G. SUMMARY AND INTERMEDIATE CONCLUSIONS 63

V. THE SOFTWARE ENGINEERING ENVIRONMENT 65

A. INTRODUCTICN 65
B. CHARACTERISTICS OF SOFTWARE ENGINEERING

ENVIRONMENTS.... 66

1. Develcpment Support Tasks 66

2. Integrated 67

3. Uniform 67

4. Support a Solution Strategy 67

5. Adaptable 68

6. Functionally Unique 68

7. Interactive 68

e. Recent Developments 68

C. A SOFTWARE ENGINEERING ENVIRONMENT FOR

PROTOTYPES . 69

6

4.q

1. Technical Components 69

2. Support for Software Design 72

3. Support for the Prototype Process 74
D. SUMMNARY 76

VI. CASE EXAMPLES 77

A. SYNETRY, EVOLUTION, SATISFICING, AND

CCMMUNICATION 77

B. LEIRNING 79

C. WICKED PROELEMS, COMMUNICATIONS, AND THE

ORGANIZATIONAL CONTEXT 80

D. COMMUNICATION, LEARNING, AND EVOLUTION 81

E. SUMMARY 82

VII. CCNCLUSIONS 84

VIII. BICCEMENDATIONS FOR FURTHER STUDY 86

A. MANAGEMENT 86

B. ACQUISITICN AND CONTRACT MANAGEMENT . 86

C. ORGANIZATICNAL CCNTEXT 87

D. VUALITY 97
E. REPRESENTATION 88

LIST CP RIFIRENCES 99

INITIAL DISTRIBUTION LIST 99

7

,.°.
. -4 - % o . ., o . ° ° .

LIST OF TIBLES

I. Design Methodclogies 31

II. Hyrotheses Tested in the Experiment 34

* . III. Results of the Experiment 34

8

LIST OF FIGURES

2.1 Ilexander's resign Phases 14

3.1 Kolb's Learning Cycle Model 37

3.2 A Constructive Conflict Model for User

Involvement 39

3.3 Typical Life Cycle Representation 'I5

4.1 The Prototype Model 52

4.2 Evolution of Prototypes 63

9

I. IN O _UCTIO

Current software engineering practices are based on a

development model which is 10 to 15 years old., This model

is often referred to as the waterfall model. The waterfall

model shows the development of software as a series of

discrete steps [Ref. 1, 2, 3, 4, and 5].
Experience indicates, however, that software development

is nct as discrete as the model indicates, so the mcdel has

been refined by adding loops between each of the steps.

Furthermcre, as software maintenance has gained recogniticn,

there is increased pressure to refine the waterfall model to

show the added importance of maintenance in the software

life-cycle.

The software engineering profession's concern abcut

software maintenance, which is more properly termed refine-

ment and enhancement, has prompted several conjectures.

Dodd [Ref. 20] has suggested that -:he current cycl- of

develcp, -4.plement, refine and enhance, implement, refine

and enhance, implement, and so on is really zhe construction

and refinement of a prototype system.

Several other authors have suggested that we should

develop software prototypes as an alternative to the tradi-

tional, or waterfall, approach to software development

(Ref. 68, 36, 62]. Their principal argument is that the

process of software development is really iterative, slowly

expanding toward a ccopleted system. Other reasons include

enhanced communicaticns between the user and designer, fewer

requirementE problems, quicker turnaround between initial

system need and initial system implementation, to name a

few.

10

The prccess of developing a software prototype has
significart intuitive appeal for users and managars; they

can try a system cut before committing themselves to a
system which is either unsatisfactory or undelivered. Aside

from this appeal and the benefits often cited, there seems

to be little discussion about the principles underlying the

development of software prototypes.

This thesis presents one view of how the process of

developing software prototypes supports some basic elements

of general design theory and software design specifically.
Chapter II develops an integrated set of design elements

based cn several published models of the gen.ral design

process. Chapter III relates these design elements to soft-
ware development by citing examples from the computing and

information science literature. The purpose is to show that

software design is similar to other fields of design.'

Chapter IV introduces the software prototype. The

process of developing software prototypes, their roles as
models, construction strategies, and the principal uses of

prototypes are described. The chapter concludes by shcwing

how prototyres support the design elements from Chapters II
and III. Chapter V briefly describes the essential features

of scftware engineering environmen-ts, especially those

features which ars needed for developing software proto-

types. Chapter VI presents four case examples which illus-

trate the process of developing a software prototype. These
cases were chosen because in each of them there was an

explicit decision to use prototypes. Chapters VII and VIII

present Conclusions and Recommendations for Further Study.

To Faraphrase Gertrude Stein: Design is design is

design is design.

11

IT. I10DELS OF 2RSIGN IIZTH21

A. S!ROCTUBRD MODELS OF DESIGN

The ideas about design and design methods have undergone

some significant changes in the last 20 years. The early

models placed their emphasis on the process of design.

These mcdels had a rational, discrete notion of design in

which the design prccess was thought to be a sequence of

w,'ll-defined, highly structured activities. Many theorists

applied the ideas and principles of the scientific methcd to

the process. Alexander [Ref. 6] was one of the earliest of
the design theorists to carefully explain design. His three

most significant contributions were:

1. The symmetry cf the design problem--that is, design

has two symmetical parts, the for (the soluticn to

the problem) and the context (the setting which

defines the prcblem). "... adapta-.:n is a mutual

phencmenon referring to the context's adaptaticn to

the form as much as the form's adaptation to it's

ccntext ... " The design problem is an effort to

achieve "fitness" between the form and it's context.

[Ref. 6]

2. The formal decomposition of a set of requirements

into successively smaller subunits.

3. The importance of diagrams in design. A diagram, for

Alexander, is "(a]ny pattern which, by baing

abstracted frcm a raal situation, conveys the Fhys-

ical influence of certain demands or forces ... "

[Bef. 6: p. 85]

12

Alexander chose tc emphasize the process of deccmposior
in his early work. This process was divided into two

phases, analysis and synthesis.

In analysis, the designer, faced with a problem, derives

a mental picture--often vague and unsatisfactory--of the

demands of the context, and then decomposes that pic-ture

into sets (a mathematical picture). Synthesis begins by

developing diagrams (based on the sets), using the diagrams

to form a design, and then deriving the form (see Figure

2.1). Alexander also discussed evaluation (he calls it

"goodness of fit"). Goodness of fit is determined by cne of

two criteria, experimental or non-experimental. The exp.ri-

mental criterion is trial and error where "(t]he experiment

of putting a prototype form in the context itself is the

real criterion of fit." [Ref. 6: p. 21]. The ron-

experimental critericn is "(a] complete unitary description

of the demands made by the context ... " [Ref. 6: p. 21].

Alexander believes that: 1) trial and error is too expensive

and too slow and 2) there is no theory which can express
"... a unitary description of the varied phenomena of a

particular context." [Ref. 6: p. 20]. For these reascns

he concentrates on the proess of decomposition.2

Alexander's structured view was shared by many theorists

during the early 1960's. (Ref. 8, 7]. Archer (Ref. 7]

thought of design as a goal-directed activity. The goals or

objectives cf the prcblem define the proper-ties required in

the sciution. The details of the design are the designer's

decisions about how to implement those properties [Ref. 7:

p. 286].

2Alexander devotes an ent4.re Appendix to the

"Mathematical Treatment of Decomposltion."

13

II CONTEXT FORM

ii~ i MENTAL

C1 F17 PICTURE

.

C2 F2 ACTUALI
WORLD

FORMAL
C3 F3 PICTURE OF

MENTAL
PICTURE

------ ,--

Figure 2.1 1exanderts Design Phases.

14

!I

Archer identifies three components of the design

proce ss:

1. The advance through the project and through time;

2. The branching cf the problem into its logical parts;

and,

3. A prcblea-solving process cyclically moving through

subproblems (using a 30-step reiterative operational

mcdel).

Jones [Ref. 8] called the three stages in his view of

the design process divergence, transformation, and conver-

gence. He was quite convinced that designers should think
of these stages as separate:

... there is little doubt that their separation is prere-
quisite to whatever changes of methodo.logy are necessary
at each stage before they can be reintegrated to form aprocess tha, works well at the systems level. (Ref. 8:
p. 64]

P. WICKD EDBLENS

These early models were often criticized. One critique

suggested that design problems are "wicked problems" and are

not, therefore, amenable to structured analysis (and deccm-

pcsiticn). The term "wicked problem" refers to a

class of social system problems which are ill-
formulated, where the information is confusing, where
there aie many clients and decision-makers with
con flicting valus and where the ramifications in the
whcle system are thcroughly confusing. (Ref. 9]

Wicked problems have the following properties :

1. wicked problems ae ill-formulated. They have no

definitive formulatiot and any formulaticn will

correspond to the formulation of the solution. This

means that any time a formulation is made, additional

15

questions can be asked and more information can be

requested. This also means that the informa:ion

needed to understand the problem is determined by

one's idea or plan of a solution. In other wcds,

whenever a wicked problem is formulated there must

already be a sclution in mind.

2. wicked problems have no stopping rule. Any time a

sclution is fcrmulated, it could be improved or

worked on more. One can stop only because one has

run cut of resources, patience, etc. (An architect

could keep modifying and improving a design solution

fcever--he stops because he has exhausted his fee,

because the building has to be finally built, or

because he has exhausted some other resource.)

3. Solutions to wicked problems cannot be correct or

false. They can only be good or bad. (There is no

correct or false building: there can only be a "gocd"

building cr a "bad" building.)

4. In solving wicked problems there is no exhaustive

list of admissable operations. Any conceivable plan,

strategy or act is permissable in finding a solution

and none can be perscribed as mandatory.

5. For every wicked problem there is always more than

cne possible explanation. The selection of an expla-

nation depends on the employed world-view; the expla-

naticn also determines the solution to the problem.

(The high cost of construcion of a building may be

attributed to the "expensive" design, to the high

cost of materials, to the wages demanded by unions,

to high interest rates and inflation, etc.)

6. Every wicked problem is a symptom of another "higher

level" problem. (If the maintenance of the residence

is "too expensive" tc its inhabitants, this indicates

that there is a problem with the income of its inhab-

itants.)

16

. . .. ,

7. No wicked protlem and no solution to it has a defini-

tive test. In cther words, any time any teast is

"successfully" passed it is still possible that the

sclution will fail in some other respect. (If large

windows are designed for a residence to provide the

desired views, the heating of the residence may

become too expensive.)

8. Each wicked picblem is a "one shot" operation. There

4s nc room for trial and error, and there is no

possibility fcr experimentation. (A house is

designed and built--there is no going back to the

beginning to redesign and rebuild it.)

9. Every wicked problem is unique. No two problems are

exactly alike and no solutions or strategies leadina

tc solutions can readily be copied for the next

prcblem. (Even if two residences are designed for

the same family, under the same geographical ccndi-

tions they will never be identical.)

10. The wicked p:oblem sclver has no right tc be
wrcng-he is fully responsible for his action.

If design problems are considered as wicked problems,

they are certainly incompatible with the early zodels of

design. The early mcdels clearly separated the problem from
i With wicked problems, one cannot "define the

proble "--they have no definitive formulation. If one

followed the procedures of the early models of Aesign, one

should he able to establish when a solution was clearly

found. Wicked problems, however, have no stopping rule.

Some cf the propcnents of the aarly models of design devised

tests for design solutions. Alexander argued that trial and

error shculd eventually lead to "good fit"; unfortunately,

each time a solution is tried, the problem is also changed.

17

. . .

C. ACCUMUILATED KNOWLEDGE MODELS OF DESIGN

1. __.si L is k.rjqupent.a.v_

Other design models were proposed following the criti-

cisms of the early, structured models of design. Rittel

[Ref. 13] views the whole design process as sequential

problem solving in which the cycles form networks. An

essential part of this model is the continuous feedback

between tke designer and the problems environment. Rittel

calls this 'argumentation':

... the designer is] arguing toward a solution vith
himself and with cthe parties involved in the project.
He builds a case leading 4o a better understanding of
what is to be acccmolished. In its course, solution
principles are developed, evaluated in view of their
expected performance and decided upon. The partiescommit themselves to specific courses of action and to
the risks involved in them. In this way, better formu-
lations of the prcblem are being. developed simultane-
ously with a clearer and clearer image of the solution.
[Ref. 13 : p. 19-20]

If argumerts are improved procedurally, their contc.nt may

improve and the products of the design--design
decisions--may also be expected to improve. While 'argu-

ing', the parties may gain new insights about the issue,
e txpand heir world-view, modify challenged positions, and

learn more about other world-views.

2. r i

Alexander introducad the concept of pictoral

diagrams in design in 1964 (Ref. 6]. Significantly,

Alexander believed that the design diagrams were produced j_

fq~_ a, i l1lysis, a design process founded cn math-
ematical deccpositicn. Since then, Alexander and others

[Ref. 10] have concentrated on the diagrams (or Patterns)

rather than the process.

18

Alexander's atterns are not a result of rigcrcus

analysis. Rather, design is a process of acquirirg kncwl-

edge and then making decisions which reflect that knowledge.

The crucial issue for Alexander is the availability of

knowledge. That is, the design decision depends on the

accumulated knowledge of the designer. Patterns help to

provide tte designer with the necessary knowledge to solve

the problem. The pattern forms the basis of communication

between the designer and the client. A pattern--a diagram

of what the designer knows and believes important for the

problem--is designed and then passed to the client. The

client either accepts or does not accept the pattern. In

either case, bcth the client and the designer gain new

knowledge: if the pattern is not accepted, the designer

proceeds to change the design.

3. s _1 earnq

BazJanac [Ref. 15] views tha design process as

formulating the problem and proceeding with a search for the

definiticn of the solution. He emphasizes that the formula-

tion cf the problem is not final. The formulation reflects

the understanding of the problem, based on the designer's

knowledge, It _hat _ie.

Any sciution ... is already basically etermined b th
deiinition of the problem. So t3e "search for solu icn"
is then t hi search f~r the defin'ition of the specific
solution whlch best fits the knowledge the designer has
at that time. Once the specific solution is defined it
is documented.- Documentation may start during the defi-
nition cf the problem and continue sporadically during
the definition of the solution--in fact, all three
phases may at times take place simultaneously. The
ultimate purpose of the documentation is tc communicate
the definitions of the problem and the solution; its
immediate purpose is to aid the designer in the defini-
tion of the problem and the solution--to help him detect
new aspects 9f the p;obleu and the solution and to
detect inconsistencies in his view. [Ref. 15]

19

During the search and redefinition, the designer

keeps learning more about the problem and the soluticn. The

designer gains new insights which ultimately lead to a new

view-- redefinition. The process (jormulate the prcblem,

search fcr the definition of the solution, dccum _t, the

specific solution) is repetitive. The designer continues to

re-define and document new formulations until 1) the incre-

mental gain in knowledge becomes insignificant and cannot
change the formulation enough to warrent redefinition, 2)

the incremental gain becomes too costly, or 3) the designer

exhausts available resources (especially time).

4. Cesi_.m 1is Stisficing

As the designer and user learn more about the

problem and as the sclution becomes clearer, more and mors

design decisions are negotiated [Ref. 13, 15]. Since these

design decisions are reached through compromise, they cannot

be called optimal, in the siense of management science and

operations research.

Simcn [Ref. 14] has introduced the idea of satis-

ficing tc describe these kinds of negotiated decisions.

.crmative economics has shown that exact solnticns to
the large optimization problems of the real world are
simply not within reach or sight. In the face of this
complexity the real-world bus:ness firm turns tc proce-
dures that find gccd enough answers to questions whse
best answers are unknowable. ... man is ... a satis-
ficer, a perscn whc accepts "good enouqh" alternatives,
not because he prefers less to more but because he has
no choice. [Ref. 14: p. 36]

20

L

D. DESIGN AS A TECHNOIOGIC&L ACTIVITY

Cross and others (Ref. 16] have proposed a view of

design which requires the explicit acknowledgement of the

organization's role in design.

'Technclogy' ... clearly denotes more than just hard-
ware, and nvolves at the very least, consideration ofthe orqanizational systems within which machnery is
designed, commissioned, operated and paid fcr.
ITecanological' achievements, whether those of building
a rajcr bridge or Uttin a man on the moon, are as muc?
oranizational fea~ as echnical ones. (Ref. 16: p.
1 J

These ccnsideraticns lead to their view that a "satis-

factory" definition of technology has the following charac-

teristics:

1. Technology is oriented toward practical tasks.

2. Technology relies on different kinds of organized

knowledge, of which scientific knowledge is only one.

Craft knowledge, design knowledge, and organizational

and managerial skill are others.

3. Technological activity takes place in an crganiza-

ticnal context. [Ref. 16: p. 198]

Cross and ethers devcte a great deal of space to

highlight the difference between knowing "what to do"

(scientific knowledge) and knowing "how to do" (design and

c-aft knowledge) . Their main point cannot be ignored: the

organizaticr plays as large a role in design as does ths

individual.

.. DESIGN IS EVCLUTICI&RY

The early models of design were frequently criticized for

their linear, step-by-step view of design. Page (Ref. 11]
warned that the design process is not executed straight from

analysis to evaluation:

21

in the majority of practical design situations° 01
hetime you have produced this and found out that n

made a synthesis, you realize you have forgotten to
analyze something else herea._and you have to gc around
the cycle and prodcce a soaified synthesis, and so on.
In practice, ycu gc around several times.

Ellinger stated that the iterative approach to desigr "..

is pariculazly suited to novel projects of some complexity."

[Ref. 12: p. vi]

Smithies [Ref. 17] has suggested that there are a number

of essential stages in design. The first stage, design

analysis, is the statement cf the problem, P. The n.xt

stage ccnsists of finding one or more tentative solutions,

TS. This sclution is then criticized, C. When the designer

c-iticizes the solution, he or she admits that the problem

statement was inadequate. So, the designer re-states the

problem and begins anew.

P1-TS1-C1-P2-...-Pn.

Smithies attributes his views about design to Pcpper

[Ref. 18]. Popper telieves that the process or activity of

understanding can be represented by a general scheme of

.roblem sclvin _b cojecture and criticism. Popper's

scheme, adapted by Szithies, is this:

P1- TT-EE-P2.

El is the initial problem statement; TT, the 'tentative

theoryt', is the conjecture. EE, 'error elimination', is the

critical examination of the conjecture. P2 is the new

problem statement which emerges from the examination. It

leads tc ancther attempt, and so on [Ref. 18 : p. 164].

Smithies' design stages and Popper's problem-solving scheme

are very much like folya's [Ref. 19] methcd for solving

problems. Software designers should take note: Polya is a
mathematician, Popper is a philosopher, and Smithies is an

22

7.

architect, yet each approaches the solution to a prcblem in

the same way.

The progress of the designer through these stag-s is

marked by increased knowledge and shifting priorities.

Clearly that progress is not linear and should be called

evoluticnary.

P. SUMBII!

Several points about design have been made in the

proceeding sections:

1. Design is symmetrical and adaptive;
2. The interesting (i.e., large,complex) design Ercblems

can be considered as wicked problems;

3. Communications with the end user are crucial and

depend to a large degree on patterns which bridge the

communications barrier between designer and end user;

4. Design is a learning process--each party brings a

different perspective to the problem (and the solu-

ticn!) and leaves (or should leave) with an augmented

perspective;

5. Design is satisficing;

6. Design takes Flace in an organizational cont.xt;

7. Design is evclutionary.

The separation of these points should not be misccn-

strued. Each cf these aspects is interrelated and to a

certain extent mutually dependent on one another. When we

say that design is evclutionary, we also imply that design

is symmetrical and adaptive. When we say that design is an

organizational activity, we also imply that there will be

extensive ccmmunicaticn during design. Whenever we try to

understand the problem, to learn mora abouz our tentative

solution, we are raising a problem of understanding, or
posing a higher level problem, which implies that design

proLlems are wicked problems.

23

Tbis interrelated set of design elements forms the back-

drop for the remainder of this work. The following chapte-

presents evidence ftcm the literature that each of the

design elements described above is a factor in software

design.

.4

2'4

III. SOFTWARE DESIGN METHODS

A. SOFTUARE DESIGN IS SYMBETRICAL AND ADAPTIVE

Several instances in the literature point to the

symmetry cf the software design problem. That is, the solu-

tion not only depends on the problem, but the prcblem

depends cn the soluticn. Solution and problem are nct sepa-

rate issues, rather they are intertwined, much like the

figure and ground in a painting or picture. Each depends on

the other. Unfortunately, most people associated with soft-
ware design do nct appreciate this point. Peters points cut

that software designers complain bitterly that requirements

are poorly defined while customers and analysts often

complain that the design is not responsive to the problem or

problems as they see them. (Ref. 23 : p. 67]. Peters

wasn't tie first to recognize this, though. Podolsky wrote

a humorous article in 1977 [Ref. 24] where he states "P er's

Law":

Peer's Law

The solution tc a problem changes the problem.

Several other authors (Ref. 25, 26, and 27] have also recog-

nized that the problem definition tends to evolve as the

designers try to bound the problem, or modify the require-

ments. McCracken and Jackson [Ref. 27] have gone so far to

say that this dependence is analogous to the Heisenberg

Principle: Any system development activity inevitably

changes the environment out of which the need for the system

arose.

25

Much effort is currently devoted to requirements defini-

tion and yet inccmpleteness, ambiguity, and poor definiticns

in requirements documents are often pointed to as the fore-

most problems facing software designers today. The effort

which is spent on completely specifying the user's require-

ments will gain nothing if software design is adaptive.

McCracken and Jackson believe that systems requirements

can never be stated fully in advance. To assert otherwise

is to ignore the fact that the development process itself

changes the user's perceptions of what is possible,

increases insights into the applications environment, and

often changes the environment itself [Ref. 27: p. 31].
Peters says that although requirments may have been very

fixed at the beginning, they tend to change and evolve with

time. If for no other reason, the user's perception of the

problem changes as dces the designer's perception of that

problem [Ref. 23: p. 70].
Change is inevitable during software design, and yet

"planning fcr change" has long been given lip-service, at

best. Neumann believes that planning for change is slowly

being recognized as an important end in itself--and one that

usually cannot be achieved by retrofits into an inflexible

design [Ref. 28].

B. DESIGN IS SATISFICING

Mcst computer system developers will immediately argue

this point. Developers of military systems would argue the

longest and hardest. Why should the idea of satisficing be

so controversial? Perhaps the answer lies in the past, when

machine time was expensive and computer memory limited.

These limitations do not exist at the same level today. In

fact, satisficing occurs all the time. Conn states that the

requirements for state-of-the-art systems are often scaled

26

. . r -

down to respond to the need to cut the overall expense of

the project or to meet time limitations [Ref. 26: p. 403].

Designers are, or should be, constantly awars of the trade-

offs that are made in systems development, especially the

classic trade-off, ccst versus performance.

Several authors point out that a user should, in fact

must, sacrifice an cptimum design for a design which can

cope at a satisfactory level [Ref. 29, 30]. John Munsun has

been quoted as saying:

Users stz look at the economics involved in automation
as a scftware-productivity .solution. If a user can tuy
a payrcll program that is almost what he needs for
$10 000 cr one that exactly fits his needs for $1
milliont he must look at the trade-offs and reduce his
expectaions. [Ref. 30 : p. 66]

Sa-isficing has to do with more than economics.

Lawrence Peters has said that the trade-offs for execution

efficiency and ease of change must be evaluated and a

compromise made. (Ref. 30]. Lockett emphasizes the role of
user satisfaction when evaluating trade-offs. For he:r, user

satisfaction is not based solely on the functional capa-

bility of a system, but on useability, reliability, and

performance as well. Often the user cannot have ave=rything
(for example, both performance and functional capability) he

cr she wants in a system. The final product may be the

result of ccupromise. Certain functional capabilities may
be eliminated to achieve specific performance goals or, on

the other hand, t.e user may be willing to sacrifice

performance to obtain some functional capability [Ref. 31 :

p. 157].

several other authors emphasize the role of agreement,

concensus, and negotiation (Ref. 32, 39, 33]. These authcrs

contend that as system design progresses, alterna,.ives are

proposed and evaluat-.d. The exact definition of a system

27

may nct be as important as the concensus on the inexact

definition which is attained. An example from Land serves

to illustrate the iaportance of satisficing in so f-.war a

design:

the designer has to be aware that building flex-
ibility into systems can also be expensive, both in
terms of design effort and o erational performance. The
designer i s involved in a rade-off between the extra
development and operational costs of designing a system
which is adaptable and flexible--a very enaral
system--or of designing a very specific system de icated
to the needs existirq at the time of implementation, but
which may be incapable of modification and may have tc
be replaced if requirements change. [ief. 29 : p. 67]

Satisficing may also involve psychological trade-offs as

well as technical trade-offs. Madnick and Donovan reia-e an

instance where two pcssible algorithms could have baen used.

The inefficient algcrithm was chosen because the designer

could not stand the suspense of waiting [Ref. 22: p. 491].

C. SCFTUARE DESIGN IS & WICKED PROBLEM

Hcrst Rittel has suggested :hat design problems are

wicked problems [Ref. 13, 9]. These problems are ill-

formulated, have confusing information, have many clients

and decision-makers with conflicting values, and have rami-

fications in the whole system which are thoroughly

confusing. Peters and Tripp have suggested that software

design is a wicked prcblem. Th.y believed that a comparison

of the attributes and problems associated with software

design and the characteristics of wicked problems make it

apparent that software design is itself a wicked prcblem

[Ref. 37]. A review of the properties of wicked problems

and their relation tc software design should help tc put

this noticn in perspective.

28

licked rroblems have no defnitive formulation. Ar. y

time a formulation is made, additional questions can be

asked and more information can be requasted. Our inability

to define system requirements completely and unambiguously

is a symptom of this problem. Current efforts in software

development seem to be aimed at the symptom rather than the

problem.

Several authors raise the possibility that a complete

set of requirements is impossible, that a stata-cf-the-art

system is almost by definition one for which there remains

some degree of uncertainty at the time requirements are

prepared. Under these conditions, it is hard to imagine a

set of "ccmplete" requirements, since the knowledge of the

eventual system at that point can only be incomplete

(Ref. 26 : p. 403].

jjkt_§ Eroblems have no sioppin I Any time a solu-

tion is formulated, i can be improved or worked on more.

Cne stops only because one has run out of resouces,

patienca, cr something else. Few would a-gu_ zhat -therm Ir.
clear stopping rules for software des.gn. (Else why are

there innumerable examples of cost and schedule overruns?)

Sclutions to wicked Problems cannot be correct or false.
They can only be good or bad. This notion can he quite

contr-oversial among computer scientists. Granted, a

computer system must work properly, especially in life-

critical cr life-threatening circumstances (hospital equip-
-I.

ment or nuclear reactors, for example). But "work properly"

has different meanings to different people, or groups of

people, just as do "correct" or "true". 3

3Mortimer J. Adler discusses the idea of "-ruth" an
idea We judge b in Ura ideas, Macmillan ublshig
Co., Inc., ew crk, l .

29

Perhaps "good" and "bad" are poor choices as well, yet

most of us readily acknowledge the differences, when

presented with "gocd or bad, for whom?" The distinction

could be thought of in terms of 'technical success' and
'psycholcgical success'. Technical success is the degree to

which the actual performance of the system matches its spec-

ificaticn, while psychological success is the degree to

which the end user has confidence in th4 " final system

[Ref. 361.

Another distinction can be made from the observer's

point of view of a system: a system exists and is defined

by tle person(s) observing it. It is as acceptable, perhaps

even laudable, as the observer perceives it to be. If a

system wczks in the eyes of those who use it, then to those

users that system is a good one. Conversely, if a system is

observed as not working by those same users, then it is not

good regardless of any other attribute it may have.

[Ref. 33].

In acvzn _chd ro.._l.- there .6s no xhausti__ lis

of admissable opMrtjc__. Any conceivable plan, strategy,

or act is permissable in finding a solution and none can be

prescribed as mandatory. Anyone in the profession can see

that this certainly applies to software design (granted,

there are at present a finite number of "design methodolo-

gies", yet each year this number continues to increase).

The literature is replete with references to design methcd-

clogies: cbject-oriented design, data-orien:ed design,

design based on finite-state machines, and so on.

See Table I for a large, and certainly incomplete, list of

design methodologies.

Not only are we faced with many alternatives fcr a

design "mIethcdolcgy", but we also are faced with innumerable

alternatives fcr solving the subproblams in the Ellticu;

design case at hand. There may be more than one way in

30

TIBLE I

Cesign Methodologies

.jucni , ull Xa of Mehodologj

ACM/PCH Active and Passive Component Modelling
DAIES Data Criented Design
DSSAD Data Structured Systems Analysis and

Des gn
DSSD Data Structured *ystems Development
EDE Evolutionary Design Methodology
GEIS Gradual Evolution of Information Systems
HOS Higher Order Software
IBHUSD-SEP Adaptation of IBM Federal systems Division

Soft are Engineering. Practices
IESM Information Engineering Specification

Methcd
ISAC Information Systems work and Analysis

of Changes
NIJS Jackson InSystem Development
NIAT Stijssens Informaton Analysis Method
SABA System ARchitecbls ApprenticeSACT Struc.ed iciets A&Desin Tchniqu
SD System Developer
SA-Sr Structured Analysis and Structured Design
SDM System Developmen; Methodology
SEEN SSftware Engineerin? Procedurgs Notebook
SREM Software gequiremen s Engineering Methc-

dolog
STRADIS STR ctured Analysis, Design and Implemen-

tain of Informaion SystemsUJSE U/ser Software Engineering

which a target system develcpment process can proceed simply

because there are alternatie approaches available at the

tine the requirements are written. A decision between these

al.t'enatives may not be possible [Ref. 26 : p. 403].

Zr, s1.su !"cd _t 2blem there is always more than one

299"1i2 .21=12 . The selection of an explanation
depends cn the perspective, or world-view, used. The expla-

nation also determines the solution to the problem. (For

example, the high cost of software is often -ttributed to

labor-intensive design and programming; poor requirements

definition is often tlamed for software "failures".)

31

MS wicked pS. _ and R2 Eolution to it has a definitive

test. In cther words, any time any test is "successfully"

passed it is still possible that the solution will fail in

some other respect. This characteristic of wicked pzrcblems

is tied very closely to the idea of satisficing. If

computer systems are built to be flexible, their design must

te generalized. The aspect of flexibility is gained at the

expense of efficiency (not that this is bad!). So, the

system "passes" the test for flexibility but is very ineffi-

cient.

Each wicked Z9.lem is a "one shot" oeration. There is

no roc for trial and error, and there is no possibility for

experimentation. Many large-scale computer systems have

this characteristic. In fact, software development is some-

tines compared to building a bridge--once it is built there

is nc gcing back to the beginning to redesign and rebuild it

(for any number of reasons)

. _Ev=ry wickedj pr.tle__ is uniue. No two problems are
exactly alike and no two solu-.ions or strategies ladlng to

solution can readily be copied for the next problem. This

characteristic is very evident in software design. Military

systems, for example, are certainly unique. Commercial or

industrial problems are no less unique. Each organization

has a unique structure, set of goals and objectives, set of
interac-ions with the environment, cast of people, and set

of needs.'

.1" yicked Uoblem solver has no right to be wroM --

he/shj is f ull _ecnsible for his/her acticn. There has

been a grcwing skepticism among users regarding the abili-

ties cf software designers. Users have every reason to

believe that the software designer "knows" the job.

* Note that what is being discussed is the overall
problem not a subprcblem. Ths questions about reuseability
and software components should be directed ONLY to subprob-
lems, for obvious reasons.

32

. - . .. "

Clearly, the designer must be aware of many of the factors

which could affect the design. The designer must also be

aware of the effects of design decisions. Allowances will

and can bi made for unusual unforeseen difficulties. But to

hide behind the "This system meets the specifications you

approved and signed" statement is going (and has gone) too

far.

D. COMMUNICATIONS INTIEEN THE DESIGNER AND THE END USER

Perhaps the single, most widely noted problem area in

software design is the problem of communication between the
user and the designer. The recent literature emphasizes the

need for extensive ccmmunications [Ref. 25, 29, 30, 35, 39,

and 40]. The most common reason given for the problem is

that users and designers speak with different vocabularies

and find it difficult to completely understand 9ach cther.

Much of the literature which cites the need fcr closer

communicaticn is based on empirical and ancedotal reports.

King and .odriguez [ef. 41], however, report an assessment
of participation (and communication) in system development

in an experimental context. The experiment tested four

specific hypotheses (see Table II) about participat ive
design which were stated in null form. 5

The experimental results (see table III) indicate that

participative design makes a difference, especially when
viewing the "worth of the system".

sThis cnly means that the 'claim', i.e., "accepted
wisdcu" in systems design, was set up as the aiternative to
the hypcthesis, in accord with tra dit ion--I .#f! sis
testing.

33

TABLE II

Hypotheses Tested in the Experiment

Hi: Participation in the development of the system has
no effect on the user's perception of th-a worth cf the
system .

H2: Participation in the development of the system has
no effect on the amount of use which is made 9f the
sytem when the user is faced with st;ategic issues for
h ich the system was design2d to provide support.

H3: The substantive inputs provided by participants in
the design process will not be reflected in their usage
cf the system.

"HI:* Te decision erformance of participants in the'] '].design process wil not be different from that
of non-participants.

TABLE III

Results of the Experiment

Hi: The null hypothesis is rejected.
This result indicates that managers who are involvel in
the development effort tend to perceive the s stem to
be more worthwhile than managers who are merely given a I
pre-designed system to which they had no input.

H2: Cannot reject the null hypothesis.
conclude that the use of the system in terms of numberof 11~elies is not significaptly different for design
participants and ncn-participants.

H3: The null hycthesis was rejected.
it ipdicates that the substantive in uts provided by the
participant group in the design and evelbpment phaseof the ianorgaation system are reflected in -,heir
actual use of the system.
H4: Cannot reject the null hypothesis.

3-

As King and Fodriquez put it, the

experiment provides some support for "participa-
tive design theory": (a) Th--Tputs provided by par-ic-
igants appear to have been ma~e use of in the.; use of
t e system, and (b) some positive attitudinal im act--
in terms o systems "worth"--seems to be ac!.ieved
through particlpatacn. (Ref. 41]

The experiment seems to confirm some deeply held convic-

tions that participation in, and responsibility for, design

implementation can result in elimination or reduction of

communication problems [Ref. 29: p. 65].
There may be scme reason to believe that the real

problem with communication is not whether it takes place but
whether tke media of communication is appropriate. The fact

that the designer has produced a comprehensive specification

and that the user has 'signed off' the specification after

due study, is not a guarantee that the designer has under-

stood the user's needs, or the user the designer's specifi-

cation [ef. 29 : p. 65]. Stucki has suggested that charts,
graphics, color pictures, and other aids should be used to

enhance communications between users and designers: verbal

descripticns alone are just as inadequate for describing

software as they arc for an architect building a house.

(Ref. 30]. So, althcugh communications may be a significant

problem, its form may be equally as important.

E. SOFTUARE DESIGN IS LEARNING

Software design is learning, just ask any experienced

program manager. They want someone with design experience

35

to head the design team [Ref. 46]. Without explicitly

ackncwledging it, these managers place value in the experi-

ence !1_aIAd from previous work. This "learning from

doing" also takes place during the design of a system:

The reason for the discovery aspects of software design
is the designer's learning curve. As the system is
studied, analyzed, and a design formulated, certain
features are recognized as needing attention while
others are overlo ed. As it becomes pparent which
features are lacking, priorities shift. [Ref. 37]

If we accapt that learning is an element of design, just

how important is learning to design? In an experiment,

Alavi and Henderson (Ref. 55] evaluated two strategies for

systems development: evolutionary and traditional. By

their definition, the evolutionary strategy emphasized the

role of individual learning. They reported that the find-

ings suppcrt the hypcthesis that an evolutionary implementa-

tion strategy is more effective than a traditional strategy

[Ref. S5.
They try to explain their findings this way:

A. model which cffers an explanation for the findings is
Kol's experimental learning model (see Figure 3.1N.
Kolb suggekts that for a learner to be effec2ive he/s.e
must have the ability to engage in four types.of activi-
ties: (1) invclveient in new concrete experiences, (2)
observaticn and reflecticn ol these experiences, (3)
creation cf conce ts that integrate these observaticns
it 9 *eories, ana (4) usage of these theories to make
dec sicns and solve problems. . . . The evolutionary
strategy maps directly with a starting point at concrete
experiences. In contrast, the traditional approach
be an with the development of a theory. .. . An expla-
nation cf the findings may rest in the support that the
evolut cnary strategy had for the learning process.

This model has some important implications fcr soft-

ware design. For example, the perspective or world-view

that the designers (ard users) bring to a project become

important (after all, we are starting from concrete

36

oO.2

TESTING & C'OBSERVATION
INTEIRNALIZING & REFLECTION

INTEGRATION &
GENERALIZATION

VIA THEORY

Figure 3. 1 Kolb's Learning Cycle Model.

experiences). Greenspan and others believe that the ability

to efficiently design appropria-te computer systems and

enable them to evolve over their lifeti4me depends on the

extent tc which real world knowledge can be captured
* (Ref. 413). Wasserman [Ref. 35] takes the thought further by

suggesting that memiters of the different groups ccncerned

with design perceive the function of an informat'on system
dif ferently. Misunderstandi.ngs of objectives can and do

occur, many times leading tc project failure.

37

Land [Ref. 29] also states that there are different

ideologiLes and perspectives among ths different inte~ests

involved in a systems study. Land suggests that managers

meet this challenge by setting up a design team which

contains representatives of all the aajor intezest groups,

making it possible for the different ileologias and p-srspec-

-* tives of the participants to be made axplicit, and for the

different members of the group to learn f~ each others

=if~qre~ viewoointj [Ref. 29].

Hcv might the Farticipation of users in the system

design enhance or prcuote learning and real-world knowledge?

Robey (Ref. 42] conducted an experiment rthat explored a

model of constructive conflict in the M IS davelopment

process. His mcdel (presented in Figure 3.2) is descrited

here:

User E.Art*i.Eatjon should lead to conflicts, which
shculd TWE M -satisfactorily resV-ed- However,
conflict and its resolution are m~~lyto occur
when users can exercise their influence 4n the levelc2-
inert prcezss. Ccnflict 4itsslY os snotr lead to .- 3
reasolution -ather the increase in conflict makes reolu-
ticn more ifficult. It is only through parr-t-cIPation
and influence that conflict can be successfully resolved
in this model. (Ref. 42]

There is otherX research which supports Rotey's

"constructive conflIct". Boland (Ref. 514] compared two

lifferent processes cf interaction in system design:

1. traditional-the designer conducts a traditional

interview of the user

2. alternative--the designer ani user share ideas,

present mutual suggestions, an d cr itique their

suggestions.

His results are significant:

1. The alternative prccess produced higher quality

designs with important implementation advantages.

38

I PARTICIPATION

[INF~LUENCE

Figure 3.2 &Constructive Conflict mlodel for User Involvement.

2. The two prccesses produced designs which used

different organizaticnal control strategies.

3. Different prccesses may help to define different

problems arid thereby produce differnt, but equally

rational, solutions. (Ref. 514]
Boland likens the p~ctlem solving process to a dancc during

which tle designer punctuates his interaction with the user

39

in a series of teaching, suqesling, and _crjj~ui_.6

Boland asks us to accept the notion of learning and the

importance cf roal wcrld knowledge:

Let us accept that the viewpoint and implicit models
held ty designers will color their collection and inter-
retaticn of data about the needs of the organization
hey are designing for. This study suggests that under-

standing how tha viewpoint builds a coherent design
statement requires an un erstanding *of how the designer
interacts and exhanges information with his clignt. The
interaction protocols may then be seen as mediating the
process cf completing the designer's "point of view"
(creating the design statement). (Ref. 5Q: p. 896]

Rcb-.y's experiment lends support to Boland's findings:

"It appears that participation does lead to perceived influ-

ence in . . . system development" [Ref. 42]. Robey's find-

ings suggest that influence is used constructively to

resolve conflict and that users learn how to exert influ-

ence towards conflict resolution as well as conflict genera-

tion as the development process proceeds [Ref. 42 : p. 82].

As we have seen, there is support that learning, argu-

mentation, and a des ian -r' s world-view are impcrtant

elements in software design.

F. SCFTUIRB DESIGN HAS AN ORGANIZATIONAL CONTEXT

At first glance, the casual reader is apt to say "You

are stating the obvious." Yet much of the current work in

software design igncres the obvious. Land provides scme

evidence for this:

1. Users are uncertain about the affect the final system

will have on their individual roles in the crganiza-

ticn and on them personally.

6 Ccmuare Boland's "dance" and Robey's "constructive
conflict for software design to Rittel's "argumentation" in
design (Chapter II).

40

2. The cbservaticn that the user operates within fcrmal

systems and that the formal procedure of the existing

systems have been overtaken by less formal. (but cfter.

mre effective) unauthorized procedures.

3. The fact that those who are involved in the analysis

prccess--DP specialists and users--- are often not

aware of strategic decisions made by senior manage-

ment which cculd have an important bearing on the

wcrkability of the system.

4. New systems almost certainly include innovations;

users and analyst/designers cannot predict managers'

responses to innovations. Conjectures about peole's
behavior are no substitute for knowledge, and in

innovation, such knowledge is not ordinarily avail-

able. [Ref. 29: p. 641

Althcugh Land cited these points as reasons for communi-

cations problems, they can equally serve as indictments

against current software design. That is, orcr.nIizatiotal
aspects cf software design aa oft-an i;nor:Ed.

Wasserman points out that organizations and computing

envi-¢cnments are highly dynamic and that information systems

must be designed fcr a changing organization [Ref. 35].

Chafin states that as computer systems become aore deeply

involved in the operations of organizations, they have

larger sccial effects on these organizations. A new

computer system may change the organization structure, the

power structure, or the overall information flow st.ructure

in an organizaticn [Bef. 0).

'41

Zmud and Cox reccgnized the organizational aspects of

software design in their discussion of a "change" approach

to design and implementation:

The change approach to HIS implementation strives to
create an environment "n which change will be accepted
through the active involvement of affected organiza-
tiona members an intensive educational program, and,
most importantly the assigning of project responsi-bility to the MI user. &dditionally, a sense of mutual
trust and committaent must develop between participants
so that a free exchange of belIefs and opinions is
possible. [Ref. 53 : p. 37]

Zmud and Cox make no reference to wicked problems, yet

their change process is reccamended when (1) the organiza-

tional activity involved is ill-defined, (2) the MIS must

interface with other organizational systems, and (3)

substantial organizational change is expected. Ccmpare

these characteristics to Horst Rittel's characteristics of

wicked problems (Chapter II).

Althcugh there are several articles and references to

organizational aspects of software design, two authors stand

cut. Kling and Scacchi have written two extensive articles,

[Ref. 59 and 60], which stress the need for an awareness of

and attenticn to organizaticnal and social aspects of system

design. Their latest work [Ref. 60], develops a family of

models (called web mcdels) which they believe helps tc "make

tetter predictions of the outcomes of using socially complex

computing developments". These models are contrasted to

'discrete-entity'--rational and traditional--models. Their

work attempts to abstract a set of principles,

characteristic of web models, from analyses published in the

literature.

42

Kling and Scacchi stress the importance of perspective

in the "social analyses of ccputing". They identify six

FersFectives, four of which predominate:

1. Formal-rational

2. Structural

3. Interactionist

4. Pclitical

Their point in discussing these perspectives is that each

"casts a different light" on the significant aspects of the

design problem. 7

Further discussion of the work of Kling and Scacchi is

beyond tte scope of this work. The point to be made of

their work is that software design is conducted in an orga-

nizational. framework:

In contrast tc the discrete-entity models, which gai
simplicity by ignoring the social context of compu in
developments, web models make explicit the sal n
conections between a focal technoloqy and its social and
political contexts. [Ref. 60 : p. 3]

G. SCFTNAR! DESIGN IS EVOLUTIONARY

Much of the current practice in software design is

constrained by a model popularly termed -he 'waterfall'

model. Tc Gilb aptly sums up the attitudes of most s:ft-

ware professionals:

It seems that they regogpize, as yst, ocnlz one .t a of
life c cle. in jarticular, Ihe aem to b speak ftq of
a recl utionary 1 fe cycle (like the birth of a human)
as cgpcsed to a more evclutionary life cycle (such as
the development of the human species). [Ref. 3]

?Kli6nl and Scacchi present an extensive d'scussicn of
the sccal 1namics cf system Iesi9n in (Bef. 59].. Tqeir
discussicn based cn the fou; p rspect.ves men ;one as
well as two others: human relations and class politics.

43

Cther authors also complain about the current life cycl _

model. Brittan is ccncerned that the serial definition of

the project development cycle, known as the linear strategy,

embodies cne fundamental concept: that an activity follows

logically from its predecessor so that each stage is

complete before the next begins (Ref. 36]. McCracken and

Jackson seem to be the most critical of the current life
cycle model. They believe that any form of life-cycle is a

project management structure imposed on system development.

Furthermcre, they Ecint out that the current life cycle

model is either a very much simplified model (which is

worthless) or unrealistic [Ref. 27]. Podolsky [Ref. 24]

argues that the current model (which he terms 'Classic

Development') is "very, very good" when it is successful,

but that when it fails, "it's horrid". He attributes the

success and failure of Classic Development to the type of

problem which will be solved: classic development is good

for well-defined, highly structured, change-resistant prcb-

lems; 't fails when presented with an ll-defined problem,

changing participants, and changing requirements.

Zvegintzov (Ref. 57] has two objections to the current life
cycle model. First, it does not portray a systems life,

only the creation, development, or youth of a system. It

does not include adulthood and is vague about operation and
maintenance. Second, it is not a cycle, it portrays a

linear path and does not, as a cycle must, return to its

beginning [Bef. 57]. Gladden even goes so far to say that

the software life cycle may be harmful to the software

professicn. See Figure 3.3 for Gladden's representation.

These arguments, and others, begin to raise a question

about the validity of the linear strategy. The linear

strategy places a great deal of reliance on the studies and

efforts made in the earlier 'stages' of software develop-

ment. Yet this strategy ignores the fundamental aspects of

"44

Lit - .

REQUIREMENTS

DESIGN

IIMPLEMENTATION

TEST

(REPEAT)

Figure 3.3 Typical Life Cycle Representation.

45

des±gn described it Chapter II. Brittan places this

predicament in perspective:

In a majority cf cases, particularly when the organiza-
tion x spcnsible for designyng and implementing the
system has experience of s mi1ar systems and when the
users are clear about what taey want, the linear
strategy is pefectly satisfactory and produces gcod
regults. Too often. a projqct starts on the linear
strategy but the initial requirement is vague,, over-
ambiticus or fails to meet the real need: in fact the
;equirefent is still fluid. The project then prcceeds
i a series of shcrt locps as the requirement solidi-
fies (Ref. 36]

Now it becomes clear why Gladden's representation in Figure

3.3 appears as it does. To make up for the reality of soft-

ware design, the E:actice is to use a 'loopy linear'

strategy. That is, to proceed in a series of relatively

haphazard and shcrt-term locps. Again from Brittan:

Some loops are inevitable. One of the symptoms of
excessive loop.ness is a feeling of antipa hy between
the different grcups associated with the prcject,
particularly if the. are geographically iispersed (the
we/they syndrcm) t-be sys-.am designers will arun2.s
about users never knowing-what they want and usets will
be anncyed by the apparent lack of good project manage-
ment as the system cverruns its budget in both time and
cost. (Ref. 36]

Brittan gives other reasons why the linear strategy is pocr:

1. when analysts refine the requirements of a system,

their investigaticns and studies frequently thrcw up

problems which were not suspected at the outset.
2. the linear strategy can only be based on studies and

investigations made by analysts; users, who determine

tte success of the system, are not usually adept at

the conjecture and extrapolation needed to understand

thcse studies.
Land (Ref. 29], Brooks [Ref. 46], Podolsky [Ref. 21], Zav.
[Ref. 32], and Lehman [Ref. 47], to name a few, have all

argued that a system will require substantial, continuing

46

i!!. . :-' ' - - - : - : ' '-' : ,-. -: o, .. ., :, .., -. . :.--

changes after the client begins to use the system. We tesnd

to relegate this pbenomenon to 'Maintenance'. But -his

isn't encugh. Consider this comment by Land:

The conventional mcdel of the systems life cycle assumes
that an analysis and feasibility stage precedes the
detailed desiqn stae and that this will be followed by
a specificiation and agreement of the specification for
the system. At that point the design of the system is
often frozen. For a typical information system the
stages recedin the design freeze take between 20% and
35% of the total time required for the develoment of the

* system. For between 65% and 80% of this time the design
of the Vystem is not to be modified, even though the"world" is changing all the time. In ractice, even a
frozen des;gn gets modified if the sys .em is seen tc be
beccming irrelevant to real requirements. Further,
inccnsistencies in design are discovered during the
construction phase as a result of "systems queries".
(Ref. 29 : p. 68]

Scftware design, no matter how hard we try otherwise, is

simply nct linear. The literature clearly supports an

evolutionary strategy, yet our practice has not recognized

this.

H. SURNA!R

The preceeding discussion shows that there is support in

*the literature for reassessing our view of software design.

Software design is symmetrical, but we currently do little

to zecognize that symmetry. Software design is satisficing,

yet there is constant amphasis on optimization, often for

its own sake and forsaking approaches That enhance the

useability or quality of the software. Perhaps, without

consciously noting it, we are also concerned with zhe "test"

design and dooming the project to mediocrity, at best, and

perhaps catastrophe.

Software design, especially for large-scale systems, is

certainly a "wicked problem." All the evidence is there; i-

only remains to acknowledge that fact. We are well aware

that communications between the designer and user are

47

all-impcrtant. Yet, we have not really given much thcught

to the medium of exchange. Software design is a learning

experience. Designers learn that projects are more ccmplex

than expicted and users learn never to trust designers.

This may be a harsh critique, but the point is wel2 illus-

trated: all parties gain something from the experience of

software design. Let us recognize the worth of this.

The organizational context of software design has long

been ignored, particularly in military systems. We must not

forget that the computers are to kei2 Ihe eo in a sstem
to R efcrm well, not to control the people as a part of the

system. Finally, we are beginning to recognize that soft-

ware design is evolutionary. There really is no ".and" to a

project, simply a restatement of the goals originally iden-

tified.

Although seven characteristics have been stated and

discussed, their irterdependencies are obvious. None of

these characteristics is mutually exclusive of ano thar.

Rather, each builds cn the cther. h!though thera ar . _-.-Mum-

erable implications in that statement, the remainder of -this

work will examine one approach which may help us to consider

the seven characteristics of design in software lesign.

48

IV. T 2PTVTAB PROTOTYPE

1. IUTBCDUCTION

For the last 35 years, systems software development has

teen based cn the sc-called 'system development cycle.' As

shown in the last chapter, there are several arguments

against such a cycle. Perhaps the most talling argument

lies in cur process controls. Several authors [Ref. 61 ,

62] have pointed out that in response to uncertainty and

increased ccplexity, there is a tendency to define and

structure (and increase!) management ccntrols.

Correspcndingly, precise requirements definitions have been

emphasized. Berrisford and Wetherbe (Ref. 61] believe that

there is a major conceptual flaw in the traditional view of

systems development. This is that system design assumes

that management knows what information is needed and it is

difficult, if nct unrealistic, ta ask managers to daf-n

their infcrmation requirements on paper.

Hcw dc scftware designers cope with this problem? Rich

and waters [Ref. 63] have explored this question and

theorize that scftware designers cope with complex design

problems by using several mental tools, one of which

involves simplifying assumptions. The use of simplifying

assumptions is both necessary and commonly used when

constructing large and complex systems:

Given a ccmplex programming problem, expert programmers
ty icallyc1hoose simplifying assumptions which, though
false, Illow them to arive rapidly at a program which
addresses the important features of the problem withcut
beine distracted by all of its details. The sim lifying
assumpt~ons a then incrementally ;etracted with ccrre-
sponding mod ica ticns to the int, al program. Often
the main questions can be answered using only the
initial prcgram. [Ref. 63 : p. 150]

49

This use of simplifying assumptions in software design

is very much like the idea cf the tentative solution, . which

was introduced in Chapter II. Such a tentative soluticn is

only a simplified system. Earl (Ref. 64] calls these

simplified systems prototypes. Carrying this one step

farther, Naumann and Jenkins define a prototype system as

"a system that captures the essential features of a later

system." [ef. 62]. The sections which follow will
" describe tte prototype process, the role of prctotypes as

models, the ways in which prototypes are used and ccncludes

by showing how the set of seven desing elements are

supported by software prototypes.

B. TBE PROTOTYPE PRCCESS

'he terms rotc%_vPe and pRototype systems have becCme

rather ccmmon lately, found in both the management litera-

ture iaarvard Business Review, for example) and the software

engineering literature (proceedings of conferences and work-

shops especially). Although the term 2cotly.= has beccme

standard, early descriptions of the process were called

"heuristic development" and "iterative enhancement"

(Ref. 61, 65].

" Regardless of how each of us may use the term, there is

general agreement that the main purpose of protoT-ype systems

is exploration and experimentation; "the aim of the early

prototype is to learn, to find out, to discover." [Ref. 68,

64, 66]. In keeping with their purpose, prototypes are

relatively inexpensive, flexible, and simplified systems.

Bally, Brittan, and Wagner describe the prototype process:

In the prototype strategy, an initial and usually highly
.simplified prototype verson of the system is designed
implemented,. tested and brouqht into operation. Basea
on the experience gained in he operation of the first
prototype, a revised requirment is established, and a
second prctotype designed and implemented. The cycle is
repeated as often as is necessary to achieve a

50

satisfactcry operational s stem bearing in mind the
possibly escalating cost ol eac subsequent cycle; .
may well be that oly one prototype is necessary bz-fcre
producing the final system. [Ref. 68: p. 23]

From this description, four steps are evident (Ref. 62]:

1. Identify the user's basic information requirements.

2. Develop a working prototype.

3. Itplement and use the prototype.

4. Revise and enhance the prototype.

Figure 4.1 illustrates the prototype process.

A prctotype system must be implemented quic.' , perhaps

in hours or days, certainly no more than two or three weeks.

The advantage here is in the user-designer interactions:

the user is given a working system to operate and criticize,

the designer receives responses based on the user's experi-

ences. The quick response of the designer guarantees that

the first prototype will be incomplete. This aspect is

importaDt: there is an explicit understanding between the

user and designer that the system will be incomplete, that

a prototype is meant to be modified, expanded, supplementd,

or supplanted [Ref. 62].

C. PNOTCTYPES AS BODELS

Many authors consider prototypes to be models (Ref. 64,

82, 69]. As models, prototypes reduce risk and test alter-

native designs through live operation. (Ref. 64].

Three aspects of prototypes as models are important.

First, models are abstract:

The crit4cal skill cf system design is . . , claimed tc
bg explicaticn of t ie implSc, models in managers'
minds, of their decision-making processes and views of
their crganisation and environment. (Ref. 64 : p. 163]

51

p.7

IDENTIFY

REQUIEMENT
DEVELOPROTOTYP

US

Figure 4.1 The Prototype model.

Second, managers prefer simple models at first. As they

begin to understand the mo dels, they become involved with

the design and implementat ion to build more realistic

systems. Ref. 614]

Third, a prototype is subject to modelling effects.

That is, as a model, the prototype is only a limited version

of the final system. So, a prototype is one kind of scale

pofj ac cur ate in some ways, inaccurate in others

(Ref. 69].

52

D. STRATEGIES TO PRODUCE PROTOTYPES

Three strategies are generally recognized for producing

protctypes, 1) methodologies (in current use) , 2) executable

specifications (state-of-the-art and research issues) , and

3) autcmatic programming (a research topic).

1. _he Mteho242glcqy Strategy

There are three basic methodologies which are used

to produce software prototypes. First, in screen and repcrt

formatting, the designer produces a set of user interfaces

which will be similar to the final system. Second, in

partial ard incomplete implementation, the designer and user

identify cnly a subset of the total problem. Third, for

selective isplementation, the designer develops components

of the final system and then integrate the components.

[Ref. 71]

2. Executable Srecifications

The executable specification, -the second techrique

for pzotctyping, is a current 'hot' topic in the computer

science literature. Davis [Ref. 72] describes a software

tool, the Feature Simulator, which "executes" formally

writter "equirements specifications for real-time systems.

Feather [Ref. 73] proposes a methodology for developing

protctypes from specifications based on the transformation

of "specification constructs" into an implementaticn.

Perhaps the most ambitious work on executable specifications

is that reported by Cohon and others. They believe that "a

protctype serves to mi..Lgate both imperfect communication

and lack cf forsight (sic)." [Ref. 74]

The solution Cchen and others have adopted separates

the imperfect communication and lack of foresight issues by

having a fcrmal specification language which unambigicusly

53

describes systems, and a separate tool (symbolic execution

system) which helps the reader to understand any part-icular

specificaticn. This tool can be used by the specification

writer tc validate the specification and by the implementor

(or buyer) to andarstand what exactly has been specified

(i.e., hcw the pieces interact). "Given the specification

and the tool, a prototype will not be needed." That is, if

the designers can completely specify the requirements and

they then use the symbolic execution system, Cohen and

others believe that it is no longer useful to develop a

prototype.

But consider the following comment by Taylor and

Standish:

•having a precise specification language is of no
help, since t a user really doesn't know what statements
to make in such a language-- that is, he can't articu-
late his needs if he doesn't know what they are regard-less of whether or not there is a precise language for
stating them. [Ref. 78 : p. 160]

Executable specifications clearly are controversial,

especially when they concern prototypes. Whether such a

technique gains prominence will depend on advances in soft-

ware engineering tools.

2-. Autcmatic Pcrammin

Automatic programming is probably farther away,

technically, than tte ex3cutable specification. Automatic

programming can be thought of as programs that help people

write programs. The general goal of autcmatic programming

is tc allow the software designer to think cf the problem

abstractly, in a way which is natural and comfortable.

Automatic programming systems are characterized by specifi-

cation methods (formal, 'by example', or natural language),

the target language (the language in which the system writes

54

the finished program), the problem area (area of intended

applicaticn), and the method of operation (theorem-proving,

program transformaticn, knowledge-engineering, or tradi-

tional Frcblem solving) (Ref; 100]. One advantage cf auto-

matic programming is that it could allow fcr more

informality than an executable specification language

(Ref. 70].

2. USES CF PROTOTYPES

Generally, t-here are three uses of prototypes, 1) to

clarify user requirements, 2) to verify the feasibility of a

design, and 3) tc create a final system. (Ref. 75].

I. To C jifv tbq 2serL's Requirements

Ey far, the most popular use of prototypes is to

clarify the user's requirements. McCracken [Ref. 67]

believes that traditional written specifications do not

bridge -he communications gap between the designer and the

user. He states that prototypes encourage users to change

their mind.. a"out what they want, until the system is
usefaul!.

Tc highlight the problems encountered in require-

ments dccumentation, Mason and Carey (Ref. 76] make a

distincticn among three types of documentation:

1. A textual list of requirements (the most ccmmonly

used)

2. An interpretive model (gaining in popularity, es.e-
cially in military systems)

3. A working model--a prototype

The textual list, the traditional method of

describing requirements, has a distinct disadvantage. There

is a psychological distance between a textual list and what

the users will eventually receive. A lengthy (often boring)

55

', . -° . - . -'. . . .

document does not easily convey a realistic sense of hew the

system will operate and suit the user's needs (Ref. 76-].

I I.Interpretive models include SADT and USE. These

models use top-down decomposition to manage the complexity

cf large systems. The more detailed these tools are (or

become), the more specialized the language used. This pres-

ents a significant learning burden to the user (Ref. 76].

Prototypes, cn the cther hand, present a more real-

istic view cf the system to the users. The users can easily

relate their experience with the prototype to their

requirements.

2. Tc Verifv the Feasibilit of Desiln

When prototypes are used to verify the feasibility
of a design, the designers and users are evaluating the

internal design of the software [Ref. 75]. After the proto-

type is developed, several aspects of the design could be

evaluated: the prototype could be used to implement and

evaluate certain design decisions; the prototype could be

used to develop and test a production systsm; the efficiency

of the protctype could be examined; or the prototype could

be developed on one machine, and the final system imple-

ment ed cn the target (or production) machine, when it

becomes available.

3. 7c Create the Final Sstem

Prototypes may be used to create the final system.

This means that part or all of the final version of the

prototype may beccme part of the production system

[Ref. 75]. Examples of this technique might1 include data-

base managenment system (DBMS) applications. For example,

once created, the Erctotype might remain unchanged espe-

cially if the system efficiency is satisfactory. On the
4 other hand, critical (or perhaps all) of the system woula be

56

- . - " / - o - L - ,i -- w -- - '- - - -.----.--- - --. -

recoded tor efficiency, either in the DBMS language, iL a

host language, or in assembly language.

P. PBOTCUYPES ADDRESS THE ESSENTIAL DESIGN ELEMENTS

1. Prgotypi j is a jsjyircaj. and Adaptale Process

Prototypes explicitly address the symmetry and adap-

tation necessary in software design. Naumann and Jenkins

(Ref. 62] believe that prctotypes provide an appropriate

response to changes in the develcpment process (protlems to

solve and available resources) as well as to changes in the

envircnment. Bally, Brittdn, and Wagner state that the

prototype strategy is an admission of failure, an admission

that there will be circumstances when we will be unable to

develcp the right system on the first attempt [Ref. 68].

Earl's ccmment perhaps best expresses the overall idea of

symmetry and adaptation:

The prctc-ype syst4m . . allows . . . design by
discowyiy as much as by prediction, where -he unex.ectsa
resul-s may be as siq nificant for design as the
expectEd. (emphasis added) [Ref. 64 : p. 166].

2. Frototy2in 'Tames' the Wicked Problem

In Chapter II wicked problems were described as

problems where the information is confusiag, where there ars

many clients with conflicting values, and where the ramifi-

caticns in the whcle system are thorougly confusing.

Compare those characteristics to the experiences cf Asner

and King:

the protctype approach works when users do not
know their specific requirements, (where] the effective-
ness of any on particular approach cannot be easily
assessed without real-life experience, . . . [where)
the system will be an integraliart of the dai-to-day
activ:ties of the users.... ef. 9 p. 30

57

Ceveloping prototypes does more than recognize

wicked problems. The designers and users of prototypes

explicitly acknowledge such things as:

1. Wicked problems have no definitive solution--as Bally

and others have stated, prototypes are an admission

that more questions can be always asked and more

information can be requested.

2. Every formulation of the wicked problem corresponds

to the formulation of the solution (and vice

versa)--there is an explicit understanding between

the desinger and user about basic assumptions that

will be made when designing a prototype, especially

the first version; the protoype strategy is designad

tc cope with a fluid situation ind fuzzy requirements

[Ref. 68].

3. Wicked problems have no stopping rule-designers and

users realize that prototypes may be continually

modified or refined until some external limit (time,

resources, production need, user satisfaction, enc.)

is reached.
4. Sclutions to wicked problems cannot be correct or

false. They can only be good or bad--protctyping

explicitly recognizes the notions of "technically"

correc. and "psychologically" correct. Users contin-

ually ask for refinements until they become satisfied

(i.e., where the system is technically and psycho-

logically correct).

5. In solving wicked problems there is no exhaustive

list of admissable operations--prototypes allow

designers and users the freedom to explore and exper-

isent.

6. No wicked problem and no solution to it has a defini-
tive test-- designers and users become quickly aware

that prototypes clearly identify tradeoffs. The

58

N.7

prototype may be flexible and sacrifice (i.e., "fail"

the test for) efficiency.

3. t frort yPr ping i Satisf'cnH

Recall from Chapter II Simon's argument that people

accept alternatives which are good enough, not because they

want to, but because they have no choice. In Chapter III

evidence was presented which clearly shows that software

designers constantly balance trade-offs and are fcrced to

accept satisfactcry alternatives, rather than an optimal

alternative.

She process of developing a prototype explicitly

deals with satisficing by recognizing the interacticn amcng

the user, designer, and system. Conflicting goals and

priorities are inevitable. Negotiation between the designer

and user will lead tc a satisfactory system.

In the prototyping process, the designer ccnstructs

successive versions of the system, compromising and

resolving conflicts tetween the context (that is, user n.eeds

and desires) and the form, as constrained by technology and

economics (Ref. 62 : p. 37].

4. 1o2122in is Commjni jatinq

The prototype facilitates communication between the

designer and the user4 The basic model of the prctoype

process shows that communication is a necessary element of

the process. Without communication there is no protctype.

Mason and Cary [Ref. 76] believe that prototyping overcomes

the fundamental problems of communication between users and

designers. Naumann and Jenkins (Ref. 62] emphasize the

roles participants have and believe that prototyping

stresses the interactions between the user and the designaer.

59

--------------. . -..----

Participatior in software design can be pa -ful

(Ref. 64]. yet

Users play more active roles in prototyping than is
possible with traditional development methods. Users
set the develcpment pace by the time they spend using
and evaluating the prototype. They decide when the
cycle cf evaluation and refinement ends. [Ref. 62 : p.37

The prototype approach exploits the interact±on

tetween the designer and user. Contrast this with the cire-

fully monitored interaction in the traditional approach.

5. . _e Software Prootpe is a Learninq Aid

Several authcrs (Ref. 64, 68, 66] agree that the

very purpcse of the prototype is to allow the user tc learn

about the system; experience with the system is the most
valuable product. When prototyping, both designers and

users learn, developing a system which is more realistic in

its economic purpose, organizational context, and technical

performance [Ref. 64 : p. 166].

Earl (Ref. 64] believes that prototype systems

permit acticn learning and that there are few other vehicles

available fcr live and flexible organizational development.

As a vehicle for learning,

.... c the protoype model is the most effective repre-
sentation possible since it enables evaluation of the
proposed design in context. The prototype model is the
Iepresentation tat atlcIpates avaluation of the design
fn its operating environment. [Ref. 62 : p. 33]

60

,7w

6. T M Jtotypes ut for Orqanizat~iona!

As pointed out in Chapter III, the organizaitcnal

context is an important consideration in systems and soft-

ware desicn. Informal organizational structures and the

sub-elements of organizations play large roles in the

success cr failure cf a system. As an experiment, the

prototype provides an opportunity to test the impact of a

system and experiment on the organization's interfaces, at

least reducing the risk of a nonviable system and also

providing cpportunities for introducing and monitoring job

satisfaction improvements, organization development, and the

like [Ref. 64: p. 164]. Earl believes that prototypes are

relevant to organizations because of individual differences

among pecple in the crganization:

the prototype methodology may be relevant, for
different values, perceptions and parspectives do exis
among different interest groups, bi the different
implicaticns and impact of a system design mav nct b-
appreciated until i. is implemented; indeed'all the
options ma not be apparent. With a wcrking prototype
system des.gn values may be explicated and stakehclders
counter the technical thrust of the specialists.
(Ref. 64 : p. 165]

To say that prototyping "solves" the organizational

issues in software design is, however, going too far.

Prototyping deals explctz with the issues, yet requires

quite a bit of "orchestration". The management of the

rrocess is not without political consequences (Ref. 66].

Hcw do we measure the worth of a prototype as it

contributes to our design cf software? Earl answers this

question with the following statement:

Possibly the most valuable contribution of the prototype
metbcdclogy is to faster a climate of system apprecia-rich, user creativity and experimentation, intelligentuse and organisaticnal learning. (Ref. 64 : p. 166]

61

7. The Pro otj2! _/cess is Evolutionary

That the process of protoyping is incremental and

evolutionary shold ccme as no surprise. The important point

is that the prototype process, again, explicitly deals with

the issue. Software design has been shown to be evolu-

tionary, yet traditional software development is unable to

deal with it. Naumann and Jenkins [Ref. 62] state, as a
'principle', that "[p]rototyping represents and parallels

the dynamic process of growth, change, and evolution

existing in any living system."

A survey of the literature reveals an interesting

pattern among the models for prototyping. Although most

authors will agree that the traditional life cycle is not

evolutionary, with the exception of Naumann and Jenkins

[Ref. 62], (see also figure 4.1) Basili [Ref. 65], Bally and
others [Ref. 68], Earl [Ref. 64], Mason and Carey [Ref. 76],

and Zvegintzov [Ref. 57] all attempt tc force a cyclic

structure on software development.

Perhaps a review of evolu-ion is in order. When

some thing (animal, organizaiton, or design) evolves, it

begins simply (a few cells, a few people, a few details and

many simflifying assumptions) and grows in complexity, often
changing remarkably from its humble beginnings. This

process is clearly jcj cyclic. Rather, a better image is

the spiral, much like the spiral coil of the shell of the

autilus, growing in size yet maintaining the essential

nature it began with.

Figure 4.2 illustrates the evolutionary nature of

prototypes. Each "chamber" can be considered to be a sIngle

prototype, the wall of the "chamber" denoting the point of

refinement and enhancement. The only restrictions on the

number of "chambers" (prototypes) are in the environment

(exhausted resources, end of time, too complex or unwieldy,

and sc on).

62

G. SUMMIS_ AND INTEBREDIATE CONCLUSIONS

This chapter has explored the multi-faceted aspect of

the software prototype: the process, its role as a model,
construct.icn strategies, and uses. The chaptar concludes
with a persuasive argument that prototypes explicitly
support the seven design s.lements.

63

Several conclusicns can be stated at this time. First,

the current practice cf software engineering only recognizes

a few cf the design elements described in Chapter II.

Software design completely ignores the fact that these

elements are interrelated and mutually dependent. The

traditional method of software development only worsens the

problem.

Second, the prototype approach to software design and

development naturally supports the set of design elements.

For example, the prototype approach encourages, requires,

and explcits the interaction and communication bztween the

user and designer. Ey making this explicit, prototypes will

lead to a better design.

Third, developing better systems, delivering them on

time and within budgets are in our best interests. The

protctype approach will allow software engineers and

designers to achieve these goals.

The next chapter briefly describes software engineering

envi:cnments and how such an environment could and should

support software protctyping.

64

V. T8hj 2TIRENGINEEING ENVIRONMEN

A. I12NODUCTION

Most authors agree that prototyping has become possible

through recent develcpuents in computer technology [Ref. 61,

62]. Ccllectively, this technology is called the software

engineering environment (S E2) (Ref. 83], the programming

support environment (Ref. 107, 105], or the software devel-

-. . opment qnvironment (Bef. 84].

-. There are as many definitions for, as t-here are

references to, a scftware engineering environment. The

definition cffered by Hausen and Muellarburg spems tc be the

most satisf lng:

[A Software Engineering Environment is Jan instrumented
and organized software development laboratory where many
pec~ le cccperate . ith each. other in a fully organizei
workning pr;ocess In the deszgn construction, examina-
ticn, tuning anA maintenance ol software. (Ref. 83 :p.
147].*

Generally7 speaking, the literature ci4tes two arproaches

to ccuputer-aided design for software development: 1) the

SE2 is a systematic approach, and 2) toolboxes or toolkits

which surpcrt specific software d&eomn atvte

(Ref. 85]. The UNIX development environment is an excelle-nt

example of the tcolkit approach (Ref. 86]. The facili-as

of UNIX may be thought of as a "tool kit" from which the

developer can select tools that are appropriate fcr a

specific task. Detailed discussions of t-he UNIX snvironment

and available tools can be found in (Ref. 87 , 88].

The toclkit approach, however, has been criticized

beca use:

65

1. Tools are not organized to support specific software

develcpment methodologies;

2. TCCls do not capture management or control data for

scftware development; and,
3. Individual tocls are largely uncoordinated [Ref. 89].

Lauber has reviewed 11 tool systems in practical use and

finds that only two systems (PSL/PSA and PDL) are in wide

use.

There are several "programming" environments in active

use (for example, Interlisp [Ref. 90 , 86 , 91]), or

planned (for example, the Ada programming support envircn-

ment (APSE) [Ref. 93] U. Unfortunately, there is nc SE2

which specifically supports the prototype process. This

chapter will first describe some general characteristics of

SE2s and then explain those elements of SE2s which are

needed to support software design and prototyping.

B. CHARACTERISTICS CE SOFTVARE ENGINEERING ENVIRONMENTS

1. Development Support Tasks

There is general agreement that an SE2 supports

three develcpment "tasks": 1) software production manage-

ment, 2) technical aspects of software development, and 3)

user participation in applications development [Ref. 83, 94
* 95]. An SE2 aids software management by "capturi ng"

information about design decisions and the progress of the

develcment itself. An SE2 supports software develcpment by

providing automated tools. During the developmen, of

specific applications, the SE2 places special emphasis on

the rcle of user-designer interaction.

EProblem Statement Language/Problem Statament Analyzer
and Prc gam Design language. A detailed review of the
various tcols and environments in current use can be foundin. Sjj.,2c4 a on SoftIware Engineein Environments ,Huenke,
ediT~

66

(. 2. inl.ega~ted

-:I

An integrated SE2 will support the three devs-1opment

tasks by unifying the tasks into an ensemble. Integration

applies to the ease of using and the ease of documenting
those activities asscciated with individual tools [Ref. 84].

Perhaps cne of the mcre important characteristics of an SEZ,
integration makes it easier to combine various tools in

order to perform a specific function.

3. Unifcr m

A variety of automated tools are used by the SE2 to support

the three development tasks. For reliable operaticn, the

tools must be consistent with one another [Ref. 84, 94 , 95
• 96]. If one tool is consistent with the rest, the SE2

will be easier to tse. It is easier to learn and use

special fcrmats and ccmmand structures when they are consis-

tent among all of the tools.

4. _uj.j.rt a Solution Strateq

The technical aspects of software development

require the SE2 to support two solution strategies, one

general and the other specific. Generally, Soni and others

believe that the SE2 must support different ways of solving

the problem. (Ref. 84]. That is, the SE2 should Support

many different ways cf solving problems. It should be flex-

ible enough any problem-solving strategy. For the specific

strategy, Wasserman and others believe that an SE2 must
support both the software life cycle model (the 'waterfall'

model) and any particular software development methodolcgy

which dces not iverge very much from that model [Ref. 94,

95, 97]. In either case, the objective is the same: to

arrive at a solution.

67

Pcr practical reasons, an SE2 should be adaptable.

In most organizations, each of the development tasks is

covered by different organizational groups, each with their

own styb4s, attitudes, and so on. Also, the individuals

within each group bring different perspectives to the job.

With such a wide range of personalities, a collection of
tools should be flexible, changeable, even extensible

(Ref. 84]. The SE2 should be able to adapt to the design-

er's (or user's) sophistication and should provide defaults.

Defaults could be easily changed as users beccme more

scphisticat-d [Ref. 94, 95, 96].

6. Functionally Unique

Within each development task, there are a number of

unique functions. To reduce ambiguity, misunderstanding,

and errors, tools within an SE2 must be functionally unique.
That is, they must have a singular purpose (Ref. 84, 94, 95,
96]. Each tcol must te limited to a single design functicn.

7. Interactive

An SE! must have interactive system capabilities.

[Ref. 85, 84, 94, 95, 98]. There are two reasons for this:

interactive systems aid communication among the participants

in design, and designers can work at th.ir own pace (int-sr-

actively) rather than someone else's (batch). User partici-

pation, one of the development tasks, is simplified when

using interactive systems.

8. Recent D ec; ens

Two ideas about SE2s, personal development systems

and a software engineering knowledge base, seem to unify tne
three development tasks and embody the characteristics Just

68

stated. Personal development systems have all of -he char-

acteristics discussed (integrated, uniform, support a solu-

tion strategy, adaptable, functionally unique, and

interactive). Their most important feature, though, is the

dedicated support to a single designer [Ref. 89 , 94 , 95].

A software envircnment knowledge base would capture informa-

tion about the design activity (for example, design deci-

sions) as ell as the development process (a continuous

effort) fcr managers, designers, and users [Ref. 96]. This

knowledge base would make the information easily available

and wculd be done autcmatically.

C. A SOPTUARE ENGINEERING ENVIRONMENT FOR PROTOTYPES

Most authors agree that a 'successfulI SE2 must support

a certain view of the design process [Ref. 85, 94, 95, 97].

following the lead of Lauber [Ref. 85], a collection of

tools, or components, which support the set of seven design

elements of Chapters I and III, and which suppcrt the

develcpment of prototypes, covered in Chapter IV, is

presented. This is followed by descriptions of how such

components support software design principles and proto-

typing.

1. gn ica iroonents

There are several components which should be

included in an S22 [Ref. 62, 75, 79, 83, 101].

a. Database management Systems (DBMS)

A DBMS serves two purposes in an SE2. First,

the DBMS enables storing and retrieving information about

the design as well as the development process. For example,

a reccrd could be kept of when each version of the protctype

was released, who designed it, relevant design decisions,

69

and so on. Second, a DBMS allows for 'quick' design and

programaing of data handling features [Ref. 62, 61, 83].

Recall that the ability for quick turnaround of a wcrking

system tc the user is a necessary feature in many proto-

typing situations.

b. Generalized Input and Output Software

Query languages, report generators, and report

writers are often features of a DBMS (for example, FCCUS,

RAMIS II, and NOMAD provide these features). These features

allow for easy data retrieval and data update. Repcrt

generators can produce complicated reports with minimal

programming effort [Ref. 61, 62, 79, 101].

c. Graphics Tools

Graphics are ideal for representing the large,

and often complex, structures of non-trivial software

designs. These tools are particularly suited for the re.h-

odolcgies which use structure charts. For example, Delisle

[Ref. 102] describes a set cf graphics-based tocls, an Edit
tool, an Evaluate tol, a Format tool, and a Clean-up tocl,

which were develcped to support Structured Analysis).

d. High-level Languages

High-level languages (variously described as

non-procedural languages, fcrmal specification languages,

and so on) have one objective, flexibility (Ref. 62. 83,

101]. Such languages enable the designer to describe" what

to do" rather than "hcw to do" it. The system resolves the

procedure and snculd produce executable machine code. The

designer, given such a tool, can use abstraction to its

fullest extent (the Gamma software engineering system

[Ref. 103], for example, specifically supports abstraction).

70

e. Interactive Systems

Devices and equipment (for example, wcrking

staticns) which suppcrt interaction are essential [Ref. 61,
62, 83, 98]. Interactive terminals give users and designers

the perception of rapid and efficient operation and revi-

sion. Generally, these facilities are adapted from the hcst

computer or network of the SE2. (Personal development

systems cculd be thcught of as extensions of interactive

systems.)

f. &pplicaticn-oriented dodels

Models are an important feature of an SEZ. They

are used to support human decision making [Ref. 61, 62].

Examples of models which are potentially useful are finan-

cial zodels (as in FOCUS) or simulation models. Real-world

modelling (Ref. 43] is also an important element in the SE2 .

g. Tools fer Software Testing

There is clearly a need for tools which simplify

software testing (Ref. 83, 101]. Hausen and Muellerburg

report that most tools of this type concentrate on verifica-

tion and validation, that is convincing ourselves that the

program will execute properly. They argue that software

tools fcr program testing should covar more than just veri-

fication and validation. They recommend a philosophy of

quality improvement which includes quality assurance

(definiag software standards and controlling their cbserva-

tion), acceptance testing (demonstrating to the use= that

the scftware is acceptable for operation), and verification

and validation.

71

.. . - - ' .
°

- - 4 -. .

2. =uj ort for sScwar e Design

Any SE2 must be based on a particular view cf. soft-
ware design. [Ref. ES, 94, 95, 97]. The view presented in

Chapters II and III is unique, although elements of that

view may be supported in different ways by different

systems.

The SE2 must recognize, and provide facilities for,

the symmetrical and adaptable process of design. If the

soluticn tc a problem changes the problem, features cf the

SE2 must allow revisicn, interactive use by clients (it is

their problem, after all), and record-keeping, especially of

decisions.9

The satisficing aspect of design may best he met by

using the modelling tools of the SE2 . Simulation tcols can

help answer "what if" and performance questions. Financial

models can help decide economic questions. Planning,

contrcl, and estimating models can also help to decide on

the wcrth of various tradeoffs.

The "wicked problem" aspect is particularly vexing

in the S!2. High-level languages can help by allowing an

abstract description as a formulation of the problem. The

abstract statements are then transformed by the system into

concrete (that is, executable) code (Ref. 105, 106, 107].

Ccmmunications between the user and the designer is

aided by interactive systems. Graphics also aid user (and

designer) comprehension. Alexander and others have shcwn

how the notion of patterns helps bridge the communication

gap. Kuc, and others, [Ref. 80, 84, 108, 109, 110, 111]

have adopted this concept in their "forms-based" software

development environment. The 'forms' within the system are

9Wvbite [Ref. 10141 Dresents a model for recording relz-
vant information aout design decisions during software
develcpment.

72

used to identify and define 'patterns' that are ahove the

level of prcgramming language constructs. Although a full

discussicn of the TRIAD (TRee-based Information Analyzer and

Developer) system is beyond the scope of this work, it is an

excellent candidate for an SE2 which supports software

prototyping.
The interactive facilities and modelling features of

the SE2 will help to aid the learning process in design.

The notion of 'learning by doing' was introduced in Chapter
III. Tc support that notion, the SE2 should allow the

designer to learn, early, the consequences of a design deci-

sion. The designer must then be given the chance to revise

his decision, based cn the 'operation' experience.

Crganizational issues must be explicitly recognized

in ary SE2. First, there are organizational resources which

are needed to support the SE2: programmers, operators,

managers, space and facilities, and the computer hardware

assocated with the SE2 . Second, the work patterns and work

skills of the people who work in the SE2 are likely to

change. Unfortunately, most current development environ-

ments stress the environment over the users of the envircn-

ment [Ref. 98]. Typically, those environments have "quirks"
which require people to adjust. The system should adjust to

the skills and the preferences of the designers who use it

(using, for example, custom default features). If we

consider the SE' as an element of a complex organization

(Ref. 59, 60, 98], the environment's interaction with people

is crucial; without that interaction, the SE2 is useless in
any practical sense.

Finally, the SE2 must explicitly recognize the

evolutionary aspect of software design. The current systems

support the waterfall model of software development

(Ref. S4, 95]. The database management system, in-eractive

facilities, and high-level languages will easily support the

73

evolutionary concept of design. Report generatcre and

report witers should aid the documentation process as the

design evolves.

3. S o =tot.Ue Process

The process of developing-a software prototype bas

covered in Chapter IV. There are four steps in that

process: 1) identifying the user's basic requirements, 2)

developing a working prototype, 3) iaplementing and using

the protctype, and 4) revising and enhancing the prototype.

An existing database of the SE2 is ideal for identi-

fiying the users initial requirements. Hcwever, there are

problems if the database is empty. Kangasallo [Ref. 112]
presents a model in which information requirements are

interpreted as a set of complex queries by the database

management system. Additional features of that mcdel

include a 'program constructor' which generates code based
on the queries. A working prototype is a result of this

model.

Another metbcd depends not only on the database

management system but also on the automated tools within the

SE2. Cheatham [Ref. 105] presents a system in which the

designer and user develop an abstract model of the prcblem

(possibly from the database). Transformation refinement is

applied (by the automated tools) which results in executable

code--a working prototype.

In both of these instances, the SE2 supports the

development of the user's basic requi.-ments followed ty an

automated process of developing a working prototype. It is

important that some effort be made to analyze the user's

requirements so that reasonable queries can be made and

reasonable models (of the problem) can be developed.

74

Other systems are available which help to levelop a

basic set of user requirements. Some are quite complex

[Ref. 32] ard might be difficult to integrate with the SE2 .
Developing a working prototype, quickly, should not

be difficult to accomplish in the SE2 . High-level

languages; code generators; transformation refinement

(mentioned above); application development systems, such as

ACT/i (Ref. 76] and, application generators [Ref. 75] make

it easier to develcp working prototypes. Ideally, the

system wculd be completely automated.

An abstract model allows the designer to focus more

easily on the results of his or her decisions, rather than
the implementation details. An abstract modal also prcmotes

flexibility when it is reused. (Ref. 105]

Iwplementing and using the prototype becomes much

easier wken interactive systems are used. User interaction

is essential and interactive terminals allow the user to

perceive rapid operation and revision. They also help to
speed use: evaluation (Ref. 62].

Sevision and enhancement are facilitated in tha SE2
by using the database management system, high-level

languages (and abstract models), the generalized input and

output tools, and graphics tools. The database ccntains a

record of past designs and design decisions, changes are

easily made to abstract models and high-level language

constructs, default values of the generalized input and

output tools are easily adjusted, and the graphics tocls

will enable both users and designers to spot patterns

quickly. The user is quickly accommodated, the database

management system automatically tracks versions and design
decisions, and the designer is able to defer low-pricrity

details without fear of compromising the design: the SE2

relieves the designer of much, if not all, of the drudgery

normally associated with software design.

75

D. SUINiBY

The preceding sections have reviewed the characteristics

needed in a software engineering environment, have identi-

fied the components of a software engineering environment,

and have described hcw the components interrelate to support
both software design and the piototype process.

It is dcubtful that there are any software engineering

environments which support completely the idea cf proto-

typing. Tc a limited degree, commercial systems, such as

FOCUS, NCMAD, ACT/i, to name a few, support particular

aspects cf the prototype process. For example, FCCUS and

NOMAD facilitate applications programming in the business

community by allcwing the designer to customize reports or

other appplications for a specific user, or group, based on

an already existing database--the vice-president of sales

might be interested in the sales of a particular prcduct in

a particular geographical area. ACT/i, and other similar

products, make it easier for designers to custcmize the

formats cf terminal screens for tha user.

The products mentioned here are three of several hundred

commercial and research systems and environments. This

chapter has purposely avoided a lengthy review of any of

those hundreds, and mentions a few by way of example only.

76

II. CA. J*_Aj.!j_

The four cases which follow were chosen because in each

there was an explicit decision began to develop and use

software prototypes before the project began.

A. SYBhIR!Y, ZVOLUTICI, SATISPICIIG, IND COMNUNICATION

Heckel (Rsf. 113] describes the process of developing a P

ptototype while designing the Craig translator. The project

team explicitly chose to develop prototypes for several

reasons. First, they were concerned about the p-ohlems

which users would qctally experience, rather than thcse

problems which the designers agned might be important.

This concern is directly related to the symmetry aspect in

design. That is, the solution and problem interrelate such

that the solution depends critically upon the context of ths

problem. In this case, the context is the consumer's use of

the Translator. If the product does nct perform as

"expected", it will nct sell.

Second, the project team was interested in postpcning

decisions about restraints on the final system until they

had to. In other words, their design evolved. The

designers ignored certain restrictions which had been placed

on memory size, as long as they carefully considered the

effects of their decisions on the production version of the

Translatcr.

Third, the project team planned to use the prototype as

the scftware specification. Because they had two ,versions"

of the prototype, a black box translator and the prcgram

listing, they thought that they would avoid the traditional

misunderstandings and contradictions often found in written

77

I

software specifications. In this case, the designers were

concerned about communications, not only between the "uuer"

and the "designer" but also among themselves.

Heckel's descripticn shows that the prototypes (there

were 30 versionsl) were used to clarify requirements and to

verify tke feasibility of the design. Heckel states that if

they had been forced to make a particular design decision

earlier than they did, they probably would have made a less

satisfactcry decision.

The project was judged a success, although progress

seemed slcw and painful. Heckel identifies four benefit.s of

developing prototypes:

1. The project team could keep trying new things;

2. The prototype was a good model of the final prcduct,

sc everyone had similar expectations about what the

product would do;

3. Several decisions could be postponed without

affecting the schedule; and,

4. The designers focused their efforts on opportunitias

rather than problems.

The development process had some disappointments: soft-

ware development tock longer than expected and the f.al

product tcok more memory than expected. Heckel did not

speculate on whether these "disappointments" could have been

avoided. One interpretation is that the designers were

unable tc meet all of their objectives and when time ran out

their design was judged to be good enough. Thus, the

"disappoirtents" can be attributed to the satis ficing

aspect of design, especially the need for more memory. The

designers obviously made a trade-off between the "goodness"

of the product and the amount of memory they had originally

planned.

78

Tbig g.a 11l.ytrate d how the use of ot r o +.p.e.s

addressesthe symetr r Ution, commun icat ions, and

gatilfjiq aspet of9 design.

B. LPARNING

Hemenway and McCusker (Ref. 116] describe an exploratory

project which is leading to the development of an crder
negotiation and entry support system for telephone service

(the Bell system). The project is the development of the

user interface and the supporting software for the system.

There are two reasons given for building an operational
prototype: 1) to evaluate the use= interface and 2) to

assess the feasibility of a particular software architec-

ture. Even thcugh the reasons coincide with two uses of

prototypes (that is, to clarify user requirements and to
verify the feasibility of a design) they are related tc wo

aspects cf design. The aspects are learning and ccmmunica-

tion between the designer and ,iser.

Protctypes of the software were daveloped to determine
whether a table-driven system could be designed. Prototypes

of the user-interface were used to determine whether the

user-interface wculd substantially increase the length of

time service representatives spend on orders (compared to

manual crder entry ard search)

The case concludes by stating that -:he results of the

prototype evaluation led to making several recommendaticns
to -he designers of the first release of the system. Hence,

the Rotctp served to he p the des iqners learn More abcut

their scluti In a eir poblg_

79

C. VICKED IROBLERS, CCMMUNICATIONS, AID THE ORGANIZATIONAL

CONTEXT

Jenkins (Ref. 114] discusses how the decision to develop

a prototype led to successful development of an automated

data processing facility for the Congressional Budget

Cffice.

Two aspects of software design are apparent in this

case: 1) communications between users and designe-s and 2)

the organizational context of the system. Communications

between the designers and users was greatly improved by

using a prototype. Rather than try to decide on the design-

er's ef fectiveness ty reviewing written specifications,

managers witnessed operating demonstrations. The protctype

also shcwed non-technical users what it was possible to do

in their application areas with the new tools.

By far the most important aspect illustrated by this
case, is the concern of the designers for organizational
issues. The Congressional Budget Office serves the needs of

the Ccngress, aumittedly a ccmplex crgan;.zaion. So, th
designers needed immediate responsas to Congressional

inquiri es, because when information is needed, it is often

needed immediately or its value is lost.

This organizational aspect is also closely related to

wicked problems. Recall that wicked problems refer to

social system problems which are ill-formulated, where the

inforuaticn is confusing, where there are many clients and

decision-makers with conflicting values, and where the

80

ramifications in the whole system are thoroughly ccnfu-ing.

Clearly Congress is faced with these kinds of problems.

There is every reason to expect that the Congressional
Budget Cffice deals with similar problems when respondinq to

Congressicnal inquiries. 10

Th S Rresented bZ Jenkins illustrates how jrotyp~es

can a d jcftwre design when faced 1ht critical orqaniza-

tionaj issues and wicked Problems.

D. CONMUNICITION, LEARNING, AND EVOLUTION

Groner and others (Ref. 115] present a case of using

prototypes to clarify the user's requirements. The case is

unusual because it started with a proposal from outside the

user's ccmmunity. The designers set out to letermine if and

how ccputer technology could meet the infcrmation

processing needs of medical researchers.

This case is a clear illustration of the importance of

communications between the designer and the user and the

representation used for communicating.

Prototypes were required in the requirements analysis
phase Lecause without concrete, working examples our
potential users could not be sure that computer systems
are needed, what functions they shoald per orm, cr how
they would use them. [Ref. 115 : p. 100]

Less clearly stated is the implication of learning

during the design Frccess. The intitial design of the

prototype was based on the designer's knowledge about

•oConsider the fluctuatious from Cong ress to Congress,
chairman to chairman, committee to committee: from year to
year, week to week, and even from hour to our during the
.udget Ccmmittee markup sessions [Ref. 114 : p. 22].

81

inforuaticn processing needs for medical research.

Subsequent versions were improved based on use by and

comments frcm clinical researchers. The project partici-

pants

agreed to learn about each other's disciplines,
then define prcblems and attempt to devise and evaluate
solutions in collaboration with others in the target
user ccmmunity. [Bef. 115 : p. 101]

The project used an incremental implementation strategy

(evcluticn) under which major softwar'3 releases were sched-

uled approximately every four months. Several hundred soft-

ware changes were made over a period of a year and half.

This case shows how prototypes can be used to crea--e the

final system.'1

The case resented k1 Groner and others is an excellent

example of hcw ccmsu.Rications, learnn, and evolution are

intertwined in scftware design. The development cf F o-

_yes hE2_d al. of the design Participants core with those

aspects cf scftware desiqn.

2. SUMM BY

These cases illustrate how prototypes help designers

cope with the seven aspects of design which were covered in

Chapters II and III. In each of the cases, the authors

point to success. For Heckel, the prototypes led to a

product that was easy to use, had a number of useful

features, and was implemented on a single-chip micropro-

cessor.

t*Th case description leads the reader tc think that a
,"roduction" system was not developed. Every indication is
that the prototypes evolved into the production system.

82

Hemenway and McCusker say only that prototype evaluation

led to reccmmendations to the designers. From this, we can

safely infer that the prototype aided the designer's under-

standing of the problem.

Fcr Jenkins, the cverall assessment to the prototype was

positive. managers liked the idea of a prototype because
there was nc prior commitment to a particular course of

action.

Groner and others believe that the greatest benefit of

the protctype is that the protctypes are concrete, working

examples cf computer systems which are meeting everyday

needs.

83

VII. L 2 ! USO S

A new view of design was presented in Chapter Il. This

view identifies a set of seven interrelated and mutually

dependent elements which were found in the literature.

Support for these elements was found throughout the computer

and information science literature. The set cf seven
elements explains how best to cope with the problems, ami-

guity, and uncertainty associated with software design.

The prccess of developing a software prototype is

presented as the most appropriate way to incorporate the

design elements into software design. In fact, the proto-

type prccess exploits certain elements, such as communica-

tion tetween the user and designer, to improve the overall

design cf the software.

Cne of the more important conclusions is that software

designers, especially designers of large-scale systems, have

much to learn from designers in othe: fields. The softwa-s

design literature shows little evidenca of influence f-o m

other design fields. This wcrk is a start toward that

needed transfer cf krcwledge.

The software prototype may be the sensible way tc design

large-scale systems. Recall that complex dasign p chlems
have been called wicked problems. If some large-scale

system developments are 'more wicked' than others, then

developing prototypes seems to be the only way to design the

system.

Software prototyping enables users and designers to cope

with ill-defined problems and changing requirements. Past

experience indicates that bad technical engineering is not a

problem with software development. Rather, unsatisfactcry

design decisions and faulty information ar. the real

84

problems. Software prototypes provide a mechanism wh--ch

allows desi4gners to -test their dsec-4s-ons and to me: c==e

about the problem. The prototypes also allow us=r a

cons-.rucyive environment in which to express the-6r sanisac

ti.on Cr dissatisfacticn and a st mulant i.- learni-ng hcw -:o

deal with thei4r problems.

Softwars prototypes, however, present speciJal difficul- P

ti-es because they are not the universal remedy for software
design problems. Careful management is neeaded o nsr:

software ptototype is really de-signad and not Just put
togather. Careful thcught and planning are aecessary befor=

coding begins. Manaq=rs, designers, and users must remembsr

that a software prototype is an experimenrt. JudgemEnt and

ccmmitment area needed to control edes .~tzs

4anagers must hava the- wisdom to know when to stop. O ft en,

while d-evelcping successive prototypes, -there is a tsendency

todelay formally documenting the s yst6e m. Wh-le thi:s

problem is not unique to prcto--ypes, thers must be attsntive

mar a cem s t and comnm,6ment to qnsuri -adecane-:- and ocmrlsts

dccu ment--a ticn.

In spit-e of these cauti;ons, e-viden ce i-ndi-cates that

devialcping ard usi-ng zofzware- prototyp- s -*;s -. e best opt.Ion,
for coping with software design problms, fres~n h

system Is delivered, and for ensuring a satisfied user
pcpula-ticr.

85

VIII. RECONNENDATIONS FOR FURTHER STUDY

A. RIUAG!MhET

Developing scftware prototypes presents management with

some unusual problems. many of our current management tech-

niques depend on getting the project done right the first

time [Ref. 117]. As we are well aware, this seldom occurs.

Research is needed to assess the effect of prototype devel-

cpment cn management.

1. How does the manager decide when to cease development

of p-ototypes? When is the project ended?

2. Hcw do managers deal with increased communications

between users and designers? If special maragement

ccntrols are needed, how far should they go?

3. What management style best suits managers of software

pictctype projects?

4. How is the project budgeted and coar.olle? Hc i-

prcgress measured?

B. ACQUISITION AND CONTRACT HANAGEMENT

Current acquisiticn and contract management procedures

and regulations for software appear to be less than satis-

factory, within the Federal Government generally, and the

Bepartment of Defense particularly. Even as these proca-

dures and regulations are changing, there is some evidence

that the traditional model of software development may

become required. The Department of Defense has begun to

address the concept of software prototypes in the DoD

Software Technology Initiatives [Ref. DoD81 : p. 69-71], but

this research appears to be concerned only with requirements

specifications.

86

-T-7- W,

1. How can or how should acquitition and contract

management prccedures and regulations accomodat- the

principles of design and software prototypes?

2. What is the best strategy for encouraging acceptance

of the software design principles and software proto-

types?

3. How might the elements of software design and devel-

oping software prototypes help with the acquisition

and contract management for embedded computer

resources?

C. OBGAIIZ& NOIL CCITEXT

Kling and Scacchi [Ref. 59, 60] reviewed a large number

cf organizational studies while deveioping their views about

the effect of ccmputer systems upon organizations. When

their ideas are considered within the context of software

prototypes, further research is needed.
1. How will chances in theories of organizational deve.l-

opment affect the process of developing prototypis?

2. Is any one organizational theory best suited for

scftuare design and software prototypes?

3. What are the social dynamics of software design?
4. What are the social dynamics of developing software

prototypes?

D. QUALITY

A fundamental part of design is to satisfy the needs for

quality. Rooke (Ref. Rook82] has concluded that design is

the *cst important factor in determining overall quality.

Even though one of the objectives of developing software

prototypes is to achieve user satisfaction (a major element

of quality), research is needed to determine how prototypes

can affect software quality.

87

1. If we accept that prototypes will affect a change in

scftware technology, how will that change influence

our percepticns of quality? That is, will software
prctctypes lead users to expect more than can be me-:?

2. How might the concept of Quality Circles fit the

process of developing software prototypes?

3. To what extent will software prototypes influence
scftware quality? Since prototyping requires

concensus, who is ultimately responsible for product

quality and liability? Should anyone be "ultimately"

responsible?

B. REPR!SENT&TION

The software prototype is the ultimate representaticn of

the user's requirements. The written specification anchors

the other end of the representations scale.

1. What other types of representations can aid software

design and the development of software prototypes?
2. What methods are suitable for representing abstrac-

ticns when identifying a user's requirements b.fo-e

developing a software prototype?

3. Hcw dc different representations affect our percep-

tions and real world knowledge? Can different,

initial representations lead to quicker design and

development of software prototypes?

88

LIST OP REFERENCES

1. Boehme Barry W, Softwae En ineer Economics,
Prentice-Hall, Inc., NngiewooZ I S, NW rse,
19e1.

2. Thayer, Thcaas A., Lipow, Myron, and Nelson, Eldred

, oftware Rli-ai~b M I TRW Series of Software
Technoda, - 8. Z, irth-Holland Publishing Co.,Amsterdam, 1978.

3. Bcehm, Barry W. and others, Characteristics of
Software u41.lt1 TRW Series of sOTT-= TSEE-5oq7
V I--"_ _ -F and Publishing Co., Amsterdam, 1978.

4. Peters, Lawrence J., Software Design: Methods and
Technis, Yourdon Press, e-Yor7-981.-

5. Dunn, Robert and Ullman, Richard, Qnualitl Assurance
:c2 Cmpter Software, McGraw-Hill, New Yor,-M7.

6. Alexander, Christopher, Notes on the _ nthesis of
For, Harvard University Press, Calbrl 'e, FX_,T94.-

7. Archer, L. Bruce, "An Overview of: the Structu__ cf
Design Prccess," Em eZini Methods in Env-_ cnmntal
Desiq and Plannin -'ar .-- , -d. =-r T- 7
CiitfId NX;- f -- 165-307, 1970.

8. Jones, J. Christopher, Design Methods, Seeds cf Human
Futures, Wiley Interscience, Tohn ey F'- oyns, n,
dnalf, 1970.

9. Churchman, C. West, "Wicked Problems," Maraqement
V Sien~q, vol. 14, no. 4, December 1967, p. B141

10. Alexander, Christopher and others, Pattjr Lanuae,
Oxford Press, 1974.

11. Page, J. K., "A Review of the Papers Presen.ted at t&.e
Ccnference," 9=20221.11on stematic and Intuitive

* 4et~ d u~er s. rt8e_ _hg n--ls~e___ , -Tn---s-rin__ e-s Ell]L _ _i'9 _ITH , _a _==_n ins, =.--. -Zones-al-m
" Iio, TeIM IacIlan Company, New York,

1963, p. 20-215.

12. Ellinger, John Henry, Desi ' Ynthesis, Vol. 1, Jchn
Wiley 8 Sons, Ltd. lo on'n,9 --.

89

"-°

13. Rittel, Horst "lSome Pri nciples for the Design cf an
Educational stefor Design," Joural of
Ach~tectural Eduation. v 26, nos 1-2, WiffnTY3-rin~g,

14. Simcn, Herbert, The S iences of the Artificial, 3IT
Press, Cambridce, U-,T~i 4077

15. Bazjanac, Vladimir, "Architectural Design Theory:
[lcdj is of the Design Process.",,Basic Questions of
Des Uqr Theory Will iam B. Spile7e7X fc
EINVIref fisbing Co., Ni. p. 3 -19, 1974.

16. Cross, Ni gel, Naughton, John, and Walker, David,
"Design [lethod and Scientific Method," Des~q §tUis
v. 2, n. 4, Oct. 1981, p. 195-201.

17. Smithies. K. U~ .'PrIn.~ qe f e n in Architecture,
Van Iicstrand Reoin., Niv MY 1

18. Pop per, Karl Ra ' mund. Objective Kiowledge, An
Evc utionary]2proach, Oxzr-ofUilv-?i-rg F~Press,

*19. PCi 1a . How T o Solve It, A New Aspct of
Natheatc~Ne3d2nd14ir-13 Pzlnc~-n Univ4i;siF-y

PM--is-I7--TnceT-,ew Jersey; 19~7

20. Dodd, ' . P.,91"Prototyp Programs," Coptr v 1.3, n
2, February 1980, p.81

*21. U. S. Department of Defense, Candidata R &D 'Anhr ust s
fcr the Scftware Technology In-3FTVq- -TTe
jz:ef'EC.- TU7 -U~TTce ofT-eU~e Secretary o
Defense for Research and Engineering (Electronics and
Physical Sciences) , [May 1981.

22. [adnick, Sturat E. and Donovan, John J. 0 P r at in
§.j2M- [McGraw-Hill, New York, 1974.

23. Peters, Lawrence, "Belating Software Requiruents an.d
Design", Software 4 neern, Notes vol. 3 no. 5,
November 197S- 6 7

24. Podclsky, Joseph L,: "Horace Builds a Cycle"
Daaa2,vci. 23 no. 11, November 19 7 7 ,p-

25. bioght, Susan, "Program Design by a MuJltidisciplinarlTeam", oceadi qs of the First International
cnterenc. -0--7 5w -njUrn- T C07PT

90

. . - .--

26. Conn, Alex ?aul, "Maintenance: A Key Element in
Ccmputer Requirements Definition", Proceedin_s of -he
Compute and Software A~p.jicatiops Tefc, -79W-,

27. McCracken, D. r., and Jackson, Michael A., "Life-Cycle
Concept Considered Harmful" Software Enginec.rinq
Notes, vol. 7, no. 2, April 1582,-p.-79--32.

28. Neumann, Peter G., "Software Evolution and the
Dimensions of Change", Letter from the Editcr,

-- _Mr En1inerinq jotes, vol. 6, no. 1, January
41,- p. T.

29. Land, Frank, "Adapting to Changing User Requirements",
.. I vo 1983, p. 59-75.

30. Rauch-Hinden, Wendy, "Some Answers to the Software
Prcblems of the 1980s", Data Coations, vol. 10,
no. 5, May 1981, p. 57-7U7

31. Lockett, JoAnn, "Using Performance Metrics in System
Design", Software Eninelring Notes, vol. 3, no. 5,
November TIM,- T5 -

32. Zave, Pamela, "An Operational Approach to Requirements
SpecIfications for Embedded Systems" IEEE
Trasac4Iofn In fteea_, vol. 9E-8, no.

33. Canavan, 3dward M. "Systems, Reitv and the SystEms
Pracgioner", Journal of Systems Man_ emen&, January
1981, p. 26-28. --.... Jnuar

34. Gilt, Tom "High-Level Systems Architecture: Design
by Cbectives ' , Coputer, vol. 13, no. 5, May 1980.

35. Wasserman, Anthony Ira, "A Top-Down View of Software
Engineering", Proceedings of the First International

36. Brittan, J. N. G., "Design for a Changing
Envircnment"o The Com utel Journal, vol. 23, no. 1,
February 1986,- . Tgr-.

37. Peters, Lawrence J. and Tripp, Leonard L., "Is
Software Design 'Wicked'?", Datamation, vol. 22, no.
5, May 1976, p. 127+.

38. Scharer, Laura L., "Pinpointing Requirements,"
D2at_.a2n, vol. 27, no. 4, April 1981, p. 139-151.

91

4'.

*°- ..----

39. Horningo J. 3., "Program*Specification: Issuss and
ObsErvaions," joam Specification, J. Staunstrup
ed., Lecture _-- no" u- enc e, Vol. 1 34
Sprlnger-Verlag, Berlin, 1982, p. 5-18.

40. Chafin, Roy ., "The System Analyst and Software
Requirements Specifications", Proceedings cf the
Ccmuuter and Sc tware Applications t-onerec ,-19W7

41. King, Wi lia m Ro, and Rodriquez, Jamie I.,
"Participative Design of Strategic Decision Suppocrt
Sygtems: An Empirical AssIssmerM'
Science, vol. 27, no.6, 1981, p. 717-726.

42. Robey, Daniel and Farrow, Dana, "User Involvement in
Information System Development: A Conflict Mcdel and
Empirical Test", Management Science, vol. 28, no. 1,
January 1982, p. 73-V.

43. Greenspan, Sol J., Mylopoulos, John, and Eorgida,
Alexe "Capturing More world Knowledge in the
Req urements S pecification", Procedigq of the Sixta
iNter natlonj Ccf erence on Solwr ~Enna 41- rT

c5N~U!FS~ ~ *1982,
p. 225-234.

44. Gilb, Tom, "Evolutionary Development", Software
Sngineri.& Note.s, vol. 6, no. 2, April 1981, T.- 7"

45. Stavely, Allan I. ,"Design Feedback and ims Use in
Software resign Aid Systems", Software Enaine-ring
Nctes, vol. 3, no. 5, November 197B7--.-72-7S-

46. Brccks, Frederick P., Jr., The Mythical Man-Mcnth,
Essays on Software Engineerin-, IdronWesTTZ5-,

47. Lehman, Meir M., "Laws and Conservaticn in
Large-Program Evolution," Second Software Life Cycle
anaemenz Wcrksho2, 20-22 XUJ T"78;',1I 4T

48. Frank James W., "Applications Design by Trial and
Errcr"', em, September 1979, p. 76-78.

49. Hall, Patrick A. V., "In Defense of Life Cycles',
Software Enaine oes, vol. 7, no. 3, July 198k,

50. Lawrence, M. J., "An Examination of Evolution
Dynamics", P oceedi ng of the Sixth International

Spng, N3r yland, 1982, p.

92

..
'

. .:h ,

51. Ur.anG. L. and Karash, R., "Evlutionary odel
Building", Journal of Maketin vol. 8,
1971.

r

52. Swartcut, William and Balzer, Robert, "On theInevitable Intertwining of Specification and
Implementation Communications of ohe ACM, vol. 25,
no. 7, July 1962, - -111 0.

53. Zmud, R. W. and Cox, J. F., "The Implementation
Prccess: A Change Approach", MIS Quartelly, vol. 3,
June 1979, p. 35- 3.

54. Bcland, Richard J. Jr., "The Process and Prcduct of
System Design" Manaqement Science, vol. 24, no. 9,
may 1978, p. 867= 8W.- -

55.. Alavi, Mayram and Henderson, John C., "An Evcluticnary
Strategy fcr Implementing a Decision Support System",
Management Science, vol. 27, no. 11, November 1981, p.

56. Blum, Bruce I., "The Life Cycle--A Debate over
Alternative Models" Softwar Eng __neeri_ Notes, vcl.
7, no. 4, October 19 z, . -2.

57. Zvegintzov, Nicholas, "What Life What Cycle?", AFIPS
Conference Proceedinso National Computer Conferenc,V I -U5T 7 g27- .-- -56 8.

58. Gladden, G. R., "Stop the Life-Cycle, I Want tc Ge-
Off", Software ._a Leerinq Notes, vol. 7, nc. 2, A"ril
1982, p."353 .

59. Kling, Rob and Scacchi, Walt, "Computing as Scocial
Action: The Social Dynamics of Comput-ing in Complex
Organizations " in Adv.ances in Computers, Volume 19,Marshall C. fovits7- .caemi-rEs NY, 1980, p.
249-327.

60. Kling, Rob and Scacchi, Walt, "The Web of Computing:
Computer Technology as Social Organizaticn "

AdvanUces in Comuters Volume 21, Marshall C. fovits,
X., -d1irR9 s fy, 1982, p. 1-90.

61. Eerrisford, Thcmas and Wetherbe, James, "Heuristic
Development: A Redesign of Systems Design", 1IS
Qa~r e , vol. 3, no. 1, March 1979, p. 11-19

62. Naumann, Justus D. and Jenkins, A. Milton,
"Prototyping: The New Paradigm for Systems
Develcpment , gS "ael, September 1982, p. 29-44.

63. Rich, Charles and Waters, Richard C., "The Disciplined
Use of Simplifying Assumptions " Software Engineerinc
Notes, vol. 7, no. 5, December 19877.-3 05- .

93

64. Earl, Michael J., "Prototype Systems for Acccuntinq,
Information and Control", Accounting, Orqanizaticns
and Scciety, vcl. 3, no. 2, 7,-7.-61-70.

65. Basili, Victor R. and Turner, Albert J., "Iterative
Enhancement: A Practical Techni ue for Software
Development", First International Conferece or
Software I IEu comp-eY-ocieTyjT'75, p.

66. Asner, Michael, King, Alan and Darke, Raymond G.,
"Prototyping: A Low Risk Approach to Develcpinq
Coplex Syst eas, (Part 2-- ethodology) " Eusiness'avo1. 46, no. 4, Winter 1981, p.'34-3

67. McCracken" Daniel D., "A Maverick Approach to Systems
Anal ysis and Design" Systems AnalJs.s and Desig: A
Foundation for the 1 98I-.-- -WT-ia .-ToTeia n anU--5d!7 -Tsg-v- cience Publishing Cc., New
York, i982, p. 446-L51.

68. Bally, Laurent, Brittan, John, and Wagner, Karl H., "A
Prototype Apprcach to Information System Desigr and
Develcpment- Information and Management, vol. 1,,' . ~1'9II# p. 21-16. - ..

69. Weiser, Mark, "Scale Models and Rapid Protctyping",Software Engineerin~g o vol. 7, no. 5, Decamber
'11E27Vp. TFl -TE5.

70. Barstcw, David, "Rapid Prototypina, Autonmatic
Prcgramming, and Experimentai Sc PnceS:, SCI:.ar
En one_%In 12.1121 vol. 7, no. 5, December 1 7, p.

71. Blum, 3ruce I., "Rapid Prototyping of Information
Management Systems" Software Engineering __.Noteas. vci.
7, no. 5, December 1932, p. '=3 .

72. Davis, Alan M., "Rapid Prototyping using Executable
Req uirements Specification s", Softwarp Enqgneerina
No~s, vol. 7, no. 5, December 19Z7 P. 39-I .

73. Feather, Martin S., "Mapping for Rapi" Prototypin g",
Software n i~nqteriM 3es, vol. 7, no. 5, December

74. Cohen, Donaldr Swartout, William and Balzer, Robert,
"Using Symbolic Execution to Characterize Behavior",
Software Egineerin Notes, vol. 7, no. 5, December
19727 p. 2-32-

75. Canning, Richard W. ed., "Developing Systems by
Prototyping", EDP Analz er, vc!. 19, no. 9, September

94

76. Mascn, R. E. A. and Cary, T. T., "An Approach to
Prototyping Interactive Infcrmation System-S",
Qcmunications of the ACM, vol. 26, no. 5, May 1983,
p.--3l5.

77. McCoyd, Gerard C. and Mitchell, John R., "System
Sketching: The Generation of Rapid Prototypes for
Transaction Based Systems", So tware Engineering
Nctjq, vol. 7, no. 5, December 1927, T2.Th=T32.

78. Taylor, Tamara and Standish, Thomas A., "Initial
Thcughts. on Rapid Proto;ping Technigues", Software
Enuineering Notes, vol. ino. 5, necember 1352, p.

79. Asnerf Michael and King, Alan R., "Prototyp n2: A
Low-Risk Approach to Devleoping Com-lex S s.ems",
Business Quarterly, vol. 46, no. 3, Aatumn 1981, p.
D=3" .

80. Ramanathan, J. and Shubra, C. J., "Use of Anotated
Schemes for Developing Prototype Programs," Software
Enineering Notes, vol. 7, no. 5, December 11B'7 p.

81. Heitmeyer, C., Landvehr, C. and Cornwell, M., "The Use
of Quick Prototypes in the Secure Military Message
Systems Project" Software Eniineerin Notes, vol. 7,

* . no. 5, December i ,- p. -87.

82. Spiegel, ,titchell G. "r.-t y ping: An Approach tcInformation and C~mmun-catlon System D~s n"
Performance Evaluation Review, vol. 10, no. 1, Spring

83. Hausen, Hans-Ludwig and Muellerburg, mcnika,
"Architecture of Software Systems in theContext of
Software En ineering Environment s," Svstsms
Arcbitecture roceedinqs of the Sixth ACM E - -.
'Rzq-Zn -cnteren-ci7 IPC Sc:,en ceaaT='chEUo~y7*-srfamlto, 3-rs -,E ngand, 1981, p. 147-157.

84. Scni, Dili p, "Design and odeling of TRIAL, an
4Adaptable Integ rated Software Environment," Ccmguter

science 6uest Lecture Naval Postgraduate Sc ool,
Monterey, CA, [arch 1983.

85. Lauber, Rudolf "Development Support Systems,"
• apC.1__a, vol. 15, no. 5, May 1982, p. 36-46.

e6. Wasserman, Anthony I, "Automated Developm.nt
Environments," Com -uer, vol. 14, no. 4, April 1981,
p. 7-10.

87. Kernichan, B. N. and Elauger, P. J., "Software Tools,"
First International Conference on Software

S_ TEE- Jiuter-M1e-j-,197 57-p. 8=73.

95

AD-Ri32 612 THE SOFTWARE ENGINEERING PROTOTYPE(U) NAVAL 2/2
POSTGRADUATE SCHOOL MONTEREY CA N R KIRCHNER JUN 83

UNCLASSIFIED F/G 9/2 NLmmmIIIIIm

11111 1.012.02

11111IL25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -I963-A

.... . . y .: . . - o - - - -

88. Kernighan, Brian W. and Mashey, John R. "he Unix
Prograpming Environment," __u_._ , vol-*4, no. ',Aprl 1981, p. 12-24.

89. Gutzg Steve, Wasserman, Anthony I.. and Spie, Michael
J., Personal Development Systems for the ProfessionalProramer," cp_ vol. 14, no. 4, April 1981, p.
5 -5 3. -

90. Barstow, David R. and Shrobe, Howard Z., "Guest

Editorial: Programming Environments," IEEE
n~~j cno2.Lwvre En i Å vol S-7, no.

91. Teitelan, Warren and masinter, Larry, "The Interlisp
Proqramming Environment," C qpter, vol. 14, no. 4,
Apr l 1981, p. 25-33.

92. seqner, Peter, "The Ada Language and Envircnment,'
-o Jlginjering io2ei, vol. 5, no. 2, April 1986,

_.S Dare tmjent~ ofSp._r vo_ ~ es7 P~ur

93. U. S. Departmentof Defense, "STONEMAN," Rguiremens
fH.A4Progain 1-221 !Rjonjs -" ru5ary

94. Wasserman, Anthony I., "Toward Integrated Software
Development Environments.: Scntia, vol. 115, 1980,
p. 663-684.

95. Wasserman, Arthony I., "Automated Tools in -the
Infcrmation System Develop ment Environment," Automated
Tocis for Tfora!ion S msems Desn H.-J. 5 iler

I iy si a~i~ 3s 1T filand Putlishing
Co., Amsterdam, 1982, p. 1-§o

96. Rajaraun, M. K.. "A Characterization of Software
Design Tools 1 Software _rig Notls, vol. 7, no.
4, October 1§821 P. -1

97. U. S. Department of Defense, Ada Joint Program office,

Ada Met hedolegi 1: Ioc and12. Reaul.rment.
Novemb-E-T9.

•

98. Frentice, Dan, "An Analysis of Software Development
Envircnments " Softwa° e ncinjjnein .otes, vol. 6, no.
5, Octcber 1981,-. ' -2-70

99. Korzybskit Alfred, Scince and a An ;=jcd.=Ion
_ a

Internationa 1 cn-&ri totelian Library fublishing Co.,
Lakeville, Connecticut, 1958.

t 100. Barr Avron and Peiqenbaum Edward k. , ed. The
co k 2jn j;j C:e. !oV9 . 6I, ililamnoLse. ~ ., 1982.

'::-96

101. Evers Jack and Vessey, Iris, $$Te Systems Deveicpment
Dilemma--A Pr cjranmlng Presetv ' X
June 198 1, p. 33-45.

102. Delisle Norman Bf., Menicoy David E., and Karth,
Norman L,"Tccls for Supporting Structured Anal ysis,

fort9AA l rmiW! Hytm eiPJ

Putlisbing Co. , Amsterdam, 1982, p. 11-20.

103. Falla, a. E., "The Gamma software engineering sstem,"
1 -S1212 O U Vol. 214, no. 3, 198, .

104. White, John R., "Ak Cecision Tool for Assisting with
the Comprehension of Large Software Systems I

-Ani 1%A~ "i R.!Hollane-
Putlishing Co., Amsterdam, 1982, p. 49-65.

105. Cheattam, Thczas E., Jr., 'lProgramm .ng Support
Envircnments," Computer Science Guest Lecture, Na val
Postgraduate School, Monterey, CA, December 15, 1982.

106. Lundberg ,Bengt, "lET--An Information Modelling Tcol,11

Publishing Co., Amserdam, 1982; p. 21-30.

107. Cbeatbam, Thcmas E. , Jr., "Comparing Programming
ir~crt EnvIrcnments," Enoa- 7 earc;

Env2.jcnaen ts North-Holland PuTI,1B CO. , Ams&qraai7

108. Kuo Jeremy and others, "An Adaptable Softwars
Endlrcnment tc supptort methodologies," # Technical.
He ort TRIAD-2 Cepartment of Computer and Information
Science, Ohio Atate University, January 1983.

109. Kuo, Ho C. v Liq C. H., and Ramanathan, J. , "$A
Form-Based lF proach to Human Engineerinq
Mlethodologies,, 6 _~j.1:~li oa

110. Kuc, H. C., and others. "System Architecture of an
Adatable S~tae Environment," Department of

Ccupute and Information science Ohio State
University, Technical Report, TRIAD-T -- 3.

111. Ramanathan, 3. and Soni., D., "Design and
implementation of an &dpatable Software Environment,"
to be published in the !journal of Copt=jaq l

97

112. Kangasallo, Bannu an4 others, "System D--An Intagrated
Tcci fcr Systems Design, Implementation and Data Base
Nanogement," Auto ed o for Intorma-ion system

.I! --olland Publishing Co., Amsterdam, 1982, p.
67-83.

113. Heckel Paul "Designing Translator Software "
Saunao vol. 26, no. 2, February 1980, p. 134-134.

114. Jenkins, C. Wesley, "A pplication Prototyping: A Case

Study," Perfgorng E Review, vol. 10, nc. 1,
Spring 4al, p7T 27.

115. Grcner, Gabriel F., and others, "Requirements Analysis
in Clincial Research Information Prccassina -- a Case
10 8" Com1p_1_., vol. 12, ao. 9, September 1979, p.

116. Hevenuay, Kathleen and McCusker, Leo X., "Prototp ong
and Evaluatin a User Interface " _oceedings of -he
Sixth Iterna ional Comiuter Sodv a =en e ica-

pp7-, ayland, 1982, p. 175-180.

117. Keus, Hans E., "Prototyping: A More Reasonable
Approach to System Developmentz ^Softa/_ E" _e_-inq

"b s, vol. 7, no. 5, December i98,p. e.

118. Rocke, Denis, "What is Quality and How is i
Maintaiaed?, Procedns ofthe Royal Societv of
.CrdOn, Vol.. 38TXWBW;-une 172,-§. 25--761

98

INITIAL DISTRIBUTION LIST

No. Ccpies

1. efese tehi cal information Center 2Cameron Stat.6 o nA exandria, VA 2231'4

2. library1 Code 0 142 2
Naval Potgraduate School
Monterey, CA 93940

3. Ee partuent Ca igq~nCode 591
re a tment o~ AL si~n trative Sciences
Nava 1Pcst graduate School
Monterey, CA 93940

4. Curricular Of fice, Code 371
Ccuputer Tech no lcgy
Naval Postgraduate School
dcnterey, CA 93940

5. Professor Gordon C. Howell 2
Cepartuent. of Infcrmation Systems
Georgia State University
Atlanta, GA 303C3

6. CAPT Bradford D. fiercer, USAF 5
Code 52Zi
Naval Postq~raduate School
LMonterey, CA 93940

7. Asscc at Pzofesscr Roger D. Evered1
Naval Ecst raduate School
Monterey, CA 93940

S. Asscc Professor Roger a. Veissenger-Baylon1
* Code 94ur

Naval Postgraduate School
Monterey, C9A 93940

9. LCDE 9chn R. Hayes, USN1
Code 4Ht
Naval Post raduate School
Ocnterey, 9A93940

10 M. ichael R EKirchn~ r 3
43-143! 04 Amer3.aa DrIve,
Annan dale, VA 2003

11. Prof osior A.Milton Jenkins1
Cpezat ions n Systems management
Gra uate School df Business

12. Irs.,fMag Jane Kirchner
135S m Aodve.
Oak Park,I 60 02

99

11

100

13. ir oyc .o ac....mntDvsinI .j

**4..

14

12

F. 4

-lk.

, k

41,

